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In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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a b s t r a c t

We consider transport of neutral species interacting under a potential of mean force
with randomly placed, rigid spherical obstacles. Generally, this kind of transport
problems are studied as so-called perforated domain problems, where one imposes
no-flux or reaction boundary conditions on the pore walls forming the interface
between the pore and the solid phase. Here, we advocate a general framework
that replaces the perforated domain formulation with interaction energies as well
as with characteristic and scale-dependent randomness of materials. Our framework
provides both well-posed effective macroscopic equations for highly heterogeneous
situations and a full scale description for weakly heterogeneous materials for which
we present first computational results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We study material transport in porous materials characterized systematically by physical interaction
energies/potentials. This builds the basis for the reliable, physical description of composites and complex
materials relying on van der Waals, Lennard-Jones, and DLVO-type of interactions for heterogeneous and
multiphase materials, e.g. transport in biology [1], batteries [2], desalination devices [3], fuel cells [4], in-
terfacial dynamics [5], and ionic solutions [6]. To this end, we propose a general framework for deriving
effective equations not relying on the perforated domain methodology generally applied in the context of
porous materials [7–11] but based on interaction potentials, often called potentials of mean force, that ac-
count for repulsion and attraction such as no penetration properties of solids or other physical, chemical,
and biological processes [1]. The here outlined upscaling approach allows for new perspectives of describing
and modeling strongly heterogeneous multiphase materials such as complex composites.
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Fig. 1. Left: Reference cell Y containing a single solid hard-sphere obstacle p (red) with barycenter yb and radius Rp as well as
species s (green) with radius Rs and density cϵ. r(y,yb) is the distance of species’ barycenter to the obstacle’s barycenter. Right:
Random medium formed by uniformly distributed hard-sphere particles p. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Our methodology generalizes the description of diffusion, which investigates a single cylindrical channel
in [12], towards general diffusion processes in porous materials governed by local hard-sphere interactions
between pore walls and diffusing species s of density cϵ, i.e.,

− div
 ˆ̃D∇c̃ϵ − c̃ϵ ˆ̃M∇ψ̃θ,ϵHS


= f̃ in D := [0, L]d, (1)

where f̃ is a steady external source/sink, the heterogeneity ϵ := ℓ
L is defined by the characteristic/average

distance ℓ between rigid spherical hard-sphere particles p that are impenetrable for the species s. L is
the characteristic length scale of the entire composite comprising the solid particles p and species s, and
d ∈ N>0 is the dimension of space. The identification of a characteristic volume element, which contains the
spherical hard-sphere obstacle p surrounded by species s, see Fig. 1, allows us to systematically account for
stochasticity induced by the random location of the obstacles’ barycenter yϵb.

The tensors D̂ and M̂ in (1) are the diffusion and mobility tensors, respectively. The hard-sphere repulsion1

in (1) appears in regularized form as follows,

ψ̃θ,ϵHS :=

δθ(rϵps − σ) if rϵps ≥ σ,
δθ(0) if rϵps < σ,

(3)

where δθ is a Gaussian regularization of the Dirac delta function δ(x), x ∈ R, that means, δθ(x) := 1
θ
√
π

e−
x2
θ2 ,

and σ := Rp +Rs is the hard-sphere radius composed of the solid particle radius Rp and species radius Rs.
We note that the parameter θ in (3) can be physically chosen such that repulsive walls of Lennard-Jones-type
are obtained. Finally, the variable rϵps describes the distance between the barycenter of species s and the
surface of particle p, i.e., rϵps(x) := |r(x/ϵ,yϵb)−Rp|, x ∈ D, where yϵb describes the barycenter of the nearest
solid particle p by

yϵb(x;ω) := yb(τx/ϵω), (4)

where τx : Ω → Ω is a d-dimensional dynamical system on the probability space (Ω ,F ,P), that is: τx is
measure preserving; τx is invertible and the set


(x;ω) ∈ D × Ω

 τxω ∈ F


is dx × dP-measurable; and τx

satisfies the group property: τx+y = τx ◦ τy where τ0 denotes the identity map.
The barycenters yb(ω) ∼ U(Y) are uniformly distributed in the domain D ⊂ Rd and form an i.i.d. random

variable with the distribution function PY(A) := L(A)
(bu−bl)2 for the Lebesgue measure L, for all A ∈ B(]bl, bu[2)

1 The standard hard-sphere potential avoids the parameter θ, which weights the strength of repulsion in (3), i.e.,

ψ̃
ϵ
HS :=


0 if rps ≥ σ,
∞ if rps < σ.

(2)
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