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submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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This paper is concerned with the existence of positive solutions to a second order
boundary value problem. By imposing growth conditions on f and using a gener-
alization of the Leggett–Williams fixed point theorem, we prove the existence of at
least three symmetric positive solutions.
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1. Introduction

In the past 20 years, there has been attention focused on the existence of positive solutions to boundary
value problems for ordinary differential equations; see [1–15]. It is well known that the Krasnosel’skii [16] fixed
point theorems and the Leggett–Williams [17] multiple fixed-point theorem play an extremely important role.

In this paper, we discuss the existence of at least three positive solutions to the following boundary value
problem:

u′′(t) + f(u(t)) = 0, t ∈ [0, 1], (1.1)
u′(0) = 0, u(1) = 0, (1.2)

where f : R → [0,∞) is continuous. A solution u ∈ C(2)[0, 1] of (1.1), (1.2) is both nonnegative and
concave on [0,1]. We impose growth conditions on f which allows us to apply the generalization of the
Leggett–Williams fixed point theorem in finding three symmetric positive solutions of (1.1), (1.2).
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2. Preliminaries

In this section, we give some background material concerning cone theory in a Banach space, and we then
state the generalization of the Leggett–Williams fixed-point theorem.

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set P ⊂ E is a cone if it satisfies
the following two conditions:

(i) if x ∈ P and λ ≥ 0, then λx ∈ P ;
(ii) if x ∈ P and − x ∈ P , then x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y − x ∈ P.

Definition 2.2. A map α is said to be a nonnegative continuous concave functional on a cone P in a real
Banach space E if α : P → [0,∞) is continuous, and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y),

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say the map β is a nonnegative continuous convex functional
on a cone P in a real Banach space E if β : P → [0,∞) is continuous and

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y),

for all x, y ∈ P and 0 ≤ t ≤ 1.

Let γ, β, θ be nonnegative continuous convex functionals on P, and α,ψ be nonnegative continuous concave
functionals on P . Then for nonnegative real numbers h, a, b, d and c, we define the following convex sets:

P (γ, c) = {u ∈ P : γ(u) < c, },
P (γ, α, a, c) = {u ∈ P : a ≤ α(u), γ(u) ≤ c},
Q(γ, β, d, c) = {u ∈ P : β(u) ≤ d, γ(u) ≤ c},
P (γ, θ, α, a, b, c) = {u ∈ P : a ≤ α(u), θ(u) ≤ b, γ(u) ≤ c},
Q(γ, β, ψ, h, d, c) = {u ∈ P : h ≤ ψ(u), β(u) ≤ d, γ(u) ≤ c}.

We consider the two-point boundary value problem

−u′′ = h(t), t ∈ [0, 1], (2.1)
u′(0) = 0, u(1) = 0. (2.2)

Lemma 2.1. Let h ∈ L1[0, 1]. Then the two-point boundary value problem (2.1) and (2.2) has a unique solution

u(t) =
 1

0
G(t, s)h(s)ds

where Green’s function G(t, s) is

G(t, s) =


1− t, 0 ≤ s ≤ t ≤ 1,
1− s, 0 ≤ t ≤ s ≤ 1.

The following is a generalization of the Leggett–Williams fixed-point theorem which will play an important
role in the proof of our main results.
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