
Applied Mathematics Letters 49 (2015) 141–146

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Linear Algebra and its Applications 466 (2015) 102–116

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Inverse eigenvalue problem of Jacobi matrix 

with mixed data

Ying Wei 1

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 
Nanjing 210016, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 January 2014
Accepted 20 September 2014
Available online 22 October 2014
Submitted by Y. Wei

MSC:
15A18
15A57

Keywords:
Jacobi matrix
Eigenvalue
Inverse problem
Submatrix

In this paper, the inverse eigenvalue problem of reconstructing 
a Jacobi matrix from its eigenvalues, its leading principal 
submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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a b s t r a c t

We propose a simple upwind finite element method that is monotonicity preserving
and weakly consistent of order O(h

3
2 ). The scheme is nonlinear, but since an explicit

time integration method is used the added cost due to the nonlinearity is not
prohibitive. We prove the monotonicity preserving property for the forward Euler
method and for a second order Runge–Kutta method. The convergence properties
of the Runge–Kutta finite element method are verified on a numerical example.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The design of robust and accurate finite element methods for first order hyperbolic equations or convection
dominated convection–diffusion problems remains an active field of research. Indeed the task of designing a
numerical scheme that is of higher order than one in the zone where the exact solution is smooth, but pre-
serves the monotonicity properties of the exact solution on the discrete level, is nontrivial. Since it is known
that such a scheme necessarily must be nonlinear even for linear equations the typical strategy adopted when
working with stabilized finite element methods is to add an additional nonlinear shock-capturing term, de-
signed to make the method satisfy a discrete maximum principle [1–3]. These methods however often result
in very ill-conditioned nonlinear equations and include parameters that may be difficult to tune and depend
on the mesh geometry. Another approach is the flux corrected finite element method [4,5]. In this scheme the
system matrix is manipulated so that it becomes a so called M-matrix, the inverse of which has positive coef-
ficients which yields a maximum principle. This scheme is monotonicity preserving, but of first order. In order
to improve the accuracy anti-diffusive mechanisms, or flux-limiter techniques, have been proposed that reduce
the amount of dissipation in the smooth region by blending a low and a high order approximation [6,5,7].
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Fig. 1. Illustration of the macro patch Ωi and the points xi, xj and x∗j with associated function values ui, uj and u∗j .

In this paper we will discuss a method that is related to both the above mentioned classes in the sense
that the method consists of the addition of a nonlinear dissipative term to the standard Galerkin formulation
as for a shock capturing term, but similarly as in a flux corrected transport method the nonlinear term uses
the coefficients of the system matrix for its definition. The method is entirely derived from the finite element
variational formulation and the guiding principle of the analysis has been to add the smallest perturbation
to the centered standard Galerkin formulation that ensures that the method is monotonicity preserving.
The salient features of the resulting method is that the optimal value of the stabilization parameter can be
traced in the analysis, the monotonicity does not require any acute condition of the mesh and the artificial
dissipation term depends on the residual of the exact solution in the form of a linear combination of the
jumps of directional derivatives over each node (c.f. the edge based limiters that were proposed in the eighties,
see [6] and references therein, but also [8,3]). Formally this leads to a method with O(h 3

2 ) artificial viscosity
where the solution is smooth and we show in a numerical example that the expected O(h 3

2 ) convergence of
the error in the L2-norm, indeed holds after a suitable regularization of the stabilization term.

2. Model problem and finite element discretization

We consider the pure transport equation in R2

∂tu+ β · ∇u = 0 (1)

with u(x, 0) = u0(x) where u0(x) is some function with compact support and β ∈ [W 1,∞(R2)]2. Let
Th := {K} denote a conforming, shape regular, triangulation of R2. The finite element space of piecewise
affine continuous functions is defined on Th as

Vh := {vh ∈ H1(R2) : vh|K ∈ P1(K), ∀K ∈ Th}

where P1(K) denotes the polynomials of degree less than or equal to 1 overK. The nodal basis functions of Vh
will be denoted ϕi, i.e. ϕi(xj) = δij , with δij the Kronecker delta function. Any function vh ∈ Vh is then de-
fined by


i viϕi, where the vi denotes the nodal values of the function. We denote by NK the set of indices of

the vertices xi, ofK. We also introduce the length of the edge eij between the nodes xi and xj , hij := |xi−xj |
and the unit vector pointing from xj to xi, τij := (xi−xj)/hij . To each node xi of the mesh we associate the
macroelement Ωi := {K ∈ Th : xi ∈ K}, with associated set of indices NΩi of the vertices xj ∈ Ωi. For every
node xj in the boundary of Ωi we associate a distance h∗ij > 0 such that x∗j := xi+h∗ijτij ∈ ∂Ωi (see Fig. 1).
The value of the finite element solution at x∗j will be denoted u∗j := uh(x∗j ). If u′j and u′′j denotes the values
of uh in the nodes of the endpoints of the edge with x∗j in its interior we see that there exists some α∗j ∈ (0, 1)
such that u∗j = α∗ju′j+(1−α∗j )u′′j . By the shape regularity assumption we know that the number of points x∗j in
the interior of any edge in Ωi is upper bounded by some n∗i ∈ N. Let hK denote the radius of the largest circle
inscribed in a given triangleK, similarly let hK denote the radius of the smallest circle circumscribingK. The
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