Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Uniqueness and grow-up rate of solutions for pseudo-parabolic equations in \mathbb{R}^n with a sublinear source

Sujin Khomrutai

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

ARTICLE INFO

Article history: Received 9 January 2015 Received in revised form 15 March 2015 Accepted 15 March 2015 Available online 24 March 2015

Keywords: Pseudo-parabolic equation Sublinear Mild solutions Uniqueness Grow-up

ABSTRACT

In this paper, we solve an open problem appeared in Cao et al. (2009) concerning the uniqueness of solutions for a sublinear pseudo-parabolic Cauchy problem. In the zero initial case, we obtain the class of all non-trivial global solutions, whereas, the uniqueness of global solutions is established when the initial condition is non-zero. A lower grow-up rate of solutions is also obtained.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider solutions $u(x,t) \ge 0$ of the sublinear pseudo-parabolic Cauchy problem

$$\begin{cases} \partial_t u - \triangle \partial_t u = \triangle u + u^p & x \in \mathbb{R}^n, t > 0, \\ u(x,0) = u_0(x) \ge 0 & x \in \mathbb{R}^n, \end{cases}$$
(1.1)

where $0 is a constant and <math>n \geq 1$ is a positive integer. This problem was studied in [1] and the existence of global solutions was established within $C([0,\infty); C_b(\mathbb{R}^n))$. The question of uniqueness of solutions, however, has been left open. The purpose of this paper is to settle this question.

In recent years, there is a rich literature addressing the existence, or uniqueness of solutions for pseudoparabolic problems in bounded, or unbounded domains, and for periodic solutions. Among many others, we mention [2,1,3-6]. From practical point of view, we should also mention [7-10], where pseudo-parabolic problems appear as models for porous media flows with or without dynamic capillarity.

Setting $u = e^{-t}U$ in (1.1), we get the nonlocal formulation: $\partial_t U = \mathcal{B}U + e^{(1-p)t}\mathcal{B}U^p$, $U|_{t=0} = u_0$ and upon integration we obtain the mild formulation:

Applied Mathematics

Letters

 $E\text{-}mail\ address:\ {\tt sujin.k@chula.ac.th}.$

 $[\]label{eq:http://dx.doi.org/10.1016/j.aml.2015.03.008} 0893-9659 @ 2015 Elsevier Ltd. All rights reserved.$

$$U(x,t) = \mathcal{M}U(x,t) := u_0(x) + \int_0^t \mathcal{B}U(x,s)ds + \int_0^t e^{(1-p)s} \mathcal{B}U^p(x,s)ds.$$
(1.2)

 $\mathcal{B} = (1 - \Delta)^{-1}$ is the Bessel potential operator given by

$$\mathcal{B}\varphi = \int_{\mathbb{R}^n} B(x-y)\varphi(y)dy, \qquad B(x) = |x|^{(2-n)/2} K_{(n-2)/2}(|x|),$$

and K_{ν} is the modified Bessel function of the second kind.

Apart from \mathcal{B} , we also need the Green operator $\mathcal{G}(t) = e^{-t}e^{t\mathcal{B}} = e^{-t}\sum_{k=0}^{\infty} \frac{t^k}{k!}\mathcal{B}^k(t>0)$. Both \mathcal{B} and $\mathcal{G}(t)$ are positive, bounded, linear operators on $C_b(\mathbb{R}^n)$. Note that $\mathcal{B}(1) = 1$ and $\mathcal{G}(t)(1) = 1$. More details can be found in [11,12].

Let us state the main definition in this work.

Definition 1. A mild solution (resp., super-solution, or sub-solution) of (1.1) is a function $u \in C([0,T); C_b(\mathbb{R}^n))$ for some $0 < T \leq \infty$ such that

$$U(x,t) = \mathcal{M}U(x,t)$$
 (resp., $U \ge \mathcal{M}U$, or $U \le \mathcal{M}U$)

for all $x \in \mathbb{R}^n$, $t \in [0, T)$. If $T = \infty$, such a function u is called a global mild solution (resp., super-solution, or sub-solution). We note that $U = e^t u$.

In this work, we prove the following main results.

Theorem 1. Let $u \ge 0$ be a mild super-solution of (1.1) and $0 \le u_0 \in C(\mathbb{R}^n)$ with $u_0 \not\equiv 0$. Then $u(x,t) \ge ((1-p)t)^q$ for all $(x,t) \in \mathbb{R}^n \times [0,T)$ where q = 1/(1-p).

Corollary 1. If $u_0 \equiv 0$, then all the non-trivial global mild solutions of (1.1) have the form

$$u(x,t) = ((1-p)(t-\tau)_{+})^{q} \quad (\tau \ge 0).$$
(1.3)

Remark 1. It is straightforward to see that, the nontrivial mild solutions (1.3) are obtained by solving the ordinary differential equation emerging from (1.1), if assuming that u is only time dependent. Also observe that these solutions are just translations in time of the maximal solution $((1 - p)t)^q$.

Theorem 2. Let $u, v \in C([0,T); C_b(\mathbb{R}^n))$, $u, v \ge 0$, be mild super-solution and sub-solution, respectively, of (1.1), and $u_0, v_0 \in C^{\alpha}(\mathbb{R}^n)$ $(0 < \alpha < 1)$ satisfy $u_0(x) \ge v_0(x) \ge 0$, $u_0 \ne 0$. Then $u \ge v$ on $\mathbb{R}^n \times [0,T)$.

Corollary 2. If $u_0 \in C^{\alpha}(\mathbb{R}^n)$ $(0 < \alpha < 1)$, $u_0 \ge 0$, and $u_0 \ne 0$, then there exists a unique global mild solution u to the Cauchy problem (1.1).

2. Lower bound of grow-up rate

Lemma 1. Let $u = e^{-t}U \ge 0$ be a mild super-solution of (1.1) and $0 \le u_0 \in C(\mathbb{R}^n)$, $u_0 \ne 0$. Then for $\delta > 1$, $t_0 \in (0,T)$, there is a constant $c_{\delta} = c(\delta, u_0, t_0)$ such that $\mathcal{M}U|_{t_0} \ge c_{\delta}e^{-\delta|x|}$.

Proof. Since \mathcal{B} is monotone and $U \ge 0$, we have $U \ge \mathcal{M}U \ge u_0$. Then $U \ge \mathcal{M}U \ge \int_0^t \mathcal{B}u_0(x)ds > 0$ on $\mathbb{R}^n \times (0,T)$. By the asymptotic behavior of B(x) as $|x| \to \infty$ and $|x| \to 0$ [13], there is a constant b > 0 such that

$$B(x) \ge b\theta(x)e^{-|x|} \quad \text{where } \theta(x) = \begin{cases} |x|^{(1-n)/2} & \text{if } n \ne 2 \text{ or } |x| \ge 1, \\ 1 - \ln|x| & \text{if } n = 2 \text{ and } |x| < 1. \end{cases}$$
(2.1)

Download English Version:

https://daneshyari.com/en/article/1707670

Download Persian Version:

https://daneshyari.com/article/1707670

Daneshyari.com