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is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
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In this paper, we solve an open problem appeared in Cao et al. (2009) concerning
the uniqueness of solutions for a sublinear pseudo-parabolic Cauchy problem. In the
zero initial case, we obtain the class of all non-trivial global solutions, whereas, the
uniqueness of global solutions is established when the initial condition is non-zero.
A lower grow-up rate of solutions is also obtained.
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1. Introduction

In this paper, we consider solutions u(x, t) ≥ 0 of the sublinear pseudo-parabolic Cauchy problem
∂tu−△∂tu = △u+ up x ∈ Rn, t > 0,
u(x, 0) = u0(x) ≥ 0 x ∈ Rn,

(1.1)

where 0 < p < 1 is a constant and n ≥ 1 is a positive integer. This problem was studied in [1] and
the existence of global solutions was established within C([0,∞);Cb(Rn)). The question of uniqueness of
solutions, however, has been left open. The purpose of this paper is to settle this question.

In recent years, there is a rich literature addressing the existence, or uniqueness of solutions for pseudo-
parabolic problems in bounded, or unbounded domains, and for periodic solutions. Among many others,
we mention [2,1,3–6]. From practical point of view, we should also mention [7–10], where pseudo-parabolic
problems appear as models for porous media flows with or without dynamic capillarity.

Setting u = e−tU in (1.1), we get the nonlocal formulation: ∂tU = BU + e(1−p)tBUp, U |t=0 = u0 and
upon integration we obtain the mild formulation:
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U(x, t) =MU(x, t) := u0(x) +
 t

0
BU(x, s)ds+

 t
0
e(1−p)sBUp(x, s)ds. (1.2)

B = (1−△)−1 is the Bessel potential operator given by

Bϕ =


Rn
B(x− y)ϕ(y)dy, B(x) = |x|(2−n)/2K(n−2)/2(|x|),

and Kν is the modified Bessel function of the second kind.
Apart from B, we also need the Green operator G(t) = e−tetB = e−t

∞
k=0

tk

k!B
k(t > 0). Both B and G(t)

are positive, bounded, linear operators on Cb(Rn). Note that B(1) = 1 and G(t)(1) = 1. More details can be
found in [11,12].

Let us state the main definition in this work.

Definition 1. A mild solution (resp., super-solution, or sub-solution) of (1.1) is a function u ∈
C([0, T );Cb(Rn)) for some 0 < T ≤ ∞ such that

U(x, t) =MU(x, t) (resp., U ≥MU , or U ≤MU)

for all x ∈ Rn, t ∈ [0, T ). If T =∞, such a function u is called a global mild solution (resp., super-solution,
or sub-solution). We note that U = etu.

In this work, we prove the following main results.

Theorem 1. Let u ≥ 0 be a mild super-solution of (1.1) and 0 ≤ u0 ∈ C(Rn) with u0 ̸≡ 0. Then
u(x, t) ≥ ((1− p)t)q for all (x, t) ∈ Rn × [0, T ) where q = 1/(1− p).

Corollary 1. If u0 ≡ 0, then all the non-trivial global mild solutions of (1.1) have the form

u(x, t) = ((1− p)(t− τ)+)q (τ ≥ 0). (1.3)

Remark 1. It is straightforward to see that, the nontrivial mild solutions (1.3) are obtained by solving the
ordinary differential equation emerging from (1.1), if assuming that u is only time dependent. Also observe
that these solutions are just translations in time of the maximal solution ((1− p)t)q.

Theorem 2. Let u, v ∈ C([0, T );Cb(Rn)), u, v ≥ 0, be mild super-solution and sub-solution, respectively,
of (1.1), and u0, v0 ∈ Cα(Rn) (0 < α < 1) satisfy u0(x) ≥ v0(x) ≥ 0, u0 ̸≡ 0. Then u ≥ v on Rn × [0, T ).

Corollary 2. If u0 ∈ Cα(Rn) (0 < α < 1), u0 ≥ 0, and u0 ̸≡ 0, then there exists a unique global mild solution
u to the Cauchy problem (1.1).

2. Lower bound of grow-up rate

Lemma 1. Let u = e−tU ≥ 0 be a mild super-solution of (1.1) and 0 ≤ u0 ∈ C(Rn), u0 ̸≡ 0. Then for δ > 1,
t0 ∈ (0, T ), there is a constant cδ = c(δ, u0, t0) such that MU |t0 ≥ cδe−δ|x|.

Proof. Since B is monotone and U ≥ 0, we have U ≥ MU ≥ u0. Then U ≥ MU ≥
 t
0 Bu0(x)ds > 0 on

Rn× (0, T ). By the asymptotic behavior of B(x) as |x| → ∞ and |x| → 0 [13], there is a constant b > 0 such
that

B(x) ≥ bθ(x)e−|x| where θ(x) =

|x|(1−n)/2 if n ̸= 2 or |x| ≥ 1,
1− ln |x| if n = 2 and |x| < 1.

(2.1)
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