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a b s t r a c t

This paper considers the large deviation principle for the stochastic 3D cubic Ginzburg–
Landau equation perturbed by a small multiplicative noise. Using the weak convergence
approach, we establish a large deviation principle of Freidlin–Wentzell type by proving a
Laplace principle.
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1. Introduction

In this paper, we consider the following stochastic 3D cubic Ginzburg–Landau equation

du = [(λ + iα)∆u + γ u − (κ + iβ)|u|2u]dt +

∞
k=1

√
ελkudW k

t , (1.1)

with zero-Dirichlet boundary condition

u(t, x)|x∈∂D = 0,

where D ⊂ R3 is a bounded smooth domain, u : D → C is the unknown complex-valued function and {W k
t : t ≥ 0, k =

1, 2, . . .} is a sequence of independent of one dimensional standard Brownianmotions on some complete filtered probability
space (Ω, F , (Ft)t≥0; P). The purpose of the present paper is to establish the large deviation principle in the space E defined
below for small noise for (1.1) with H1-initial data u(x, 0) = u0(x).

The Ginzburg–Landau equation is an important model equation in superconductivity and is found to be one of the
fundamental equations in modern physics, in particular, in the description of spatial pattern formation and the onset of
instabilities in non-equilibrium fluid dynamical systems. Therefore it was broadly studied in recent years from different
points of view [1–3]. In [2], we obtained the existence and pathwise uniqueness forH1-solutions for (1.1) with slightly more
general noise term, and proved the ergodicity for the dynamical system of (1.1) driven by degenerate noise, based on the
notion of asymptotic strong Feller property in [4]. In this paper, wewill consider the large deviation principle for (1.1) driven
by small noise.
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The large deviation principle (LDP) is one of the central areas in modern probability and statistics, and the LDP for
stochastic partial differential equations has been considered in recent years. The framework was introduced by Varadham
and developed by Azencott, Freidlin andWenztell et al. for finite dimensional stochastic dynamical systems [5–8].When the
system is driven by additive noise, the LDP basically follows from the Varadham contraction principle. In the general case,
Freidlin and Wenztell developed the discretization method for the LDP. Recently, it was found that the stochastic control
and the weak convergence method can be used to show LDP by proving an equivalent Laplace principle (LP). This approach
is mainly based on a variational representation formula for some functionals of infinite dimensional Brownian motion, and
can avoid some exponential probability estimates. Wewould like to remark that the LDP for the one-dimensional stochastic
Ginzburg–Landau equation with multiplicative noise was studied in [3] by this weak convergence approach. In this paper,
we use the weak convergence method to study the LDP for the 3D cubic stochastic Ginzburg–Landau equation.

In Section 2, we give some preliminaries and state the main result of this paper, see Theorem 2.2. In Section 3, we prove
this theorem by establishing the Laplace principle. Throughout this paper, we use ⟨u, v⟩0 =


D uv̄dx to denote the L2-inner

product and ∥ · ∥X to denote the X-norm.

2. Preliminaries and main result

Let (H0, ∥ · ∥0) and (H, ∥ · ∥) be two Hilbert spaces. For a Polish space E and for ε > 0, we let Gε
: C([0, T ];H0) → E to

be a measurable map. Let P2(H0) denote the class of H0-valued Ft-predictable processes v that satisfy
 T
0 ∥v(s)∥2

0ds < ∞

a.s. For anyM > 0, we define

SM
=


v ∈ L2([0, T ];H0) :

 T

0
∥v(s)∥2

0ds ≤ M


,

AM
=

v ∈ P2(H0) : v(ω) ∈ SM , P-a.s.


.

When endowed with the weak topology in P2(H0), SM is a compact Polish space [5].
We will let A(u) = (λ + iα)∆u + γ u − (κ + iβ)|u|2u.

Definition 2.1. A function I : E → [0, ∞] is called a rate function if for each M < ∞, the level set {x ∈ E : I(x) ≤ M} is
compact in E .

Definition 2.2. Let I be a rate function on E , a family Xε of E-valued random variables is said to satisfy the Laplace principle
on E with rate function I if for all bounded continuous functions h : E → R,

lim
ε→0

ε log E

exp


−

1
ε
h(Xε)


= − inf

x∈E
{h(x) + I(x)}.

Assumption 2.1. Assume that there exists a measurable map G0
: C([0, T ];H0) → E such that

(i) For any M > 0, and a family {vε
} ⊂ AM such that vε

→ v0 in distribution as SM-valued random elements, then
Gε

W (·) +

1
√

ε


·

0 vε(s)ds


→ G0


·

0 v0(s)ds

in distribution as E-valued random elements.

(ii) For everyM < ∞, the set Γ M
0 is a compact subset in E :

Γ M
0 :=


G0


·

0
v0(s)ds


: v0

∈ AM


. (2.1)

For each f ∈ E , we let

I(f ) := inf
{
v0∈L2([0,T ];H0),

f=G0(

·
0 v0(s)ds)

}


1
2

 T

0
∥v0(s)∥2

0ds


, (2.2)

with the convention that inf∅ = ∞.

Theorem 2.1. Let the family {Gε
} satisfy Assumption 2.1, then Laplace principle holds for Xε

= Gε(W (·)).

In our situation, we take H0 = l2, H = H1
0 (D) and E = C([0, T ];H1

0 (D))∩ L2(0, T ;H2(D)). Let {ej = (0, . . . , 0, 1, 0, . . .) :

j = 1, 2, . . .} be an orthonormal basis of l2. It was proved that under the above assumptions, there exists a unique strong
solution uε ∈ E for (1.1) in [2]. Therefore, there exists a measurable functional Gε

: C([0, T ];H0) → E , such that
uε(t, ω) = Gε(W (·, ω))(t) with W (t) =


∞

j=1 W
j
t ej. To verify the Laplace principle we need to consider

uε
:= Gε


W (·) +

1
√

ε


·

0
vε(s)ds


, (2.3)
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