How to improve the domain of parameters for Newton's method

J.A. Ezquerro*, M.A. Hernández-Verón
University of La Rioja, Department of Mathematics and Computation, C/Luis de Ulloa s/n, 26004 Logroño, Spain

A R T I C L E I N F O

Article history:

Received 13 January 2015
Received in revised form 21 March
2015
Accepted 21 March 2015
Available online 11 April 2015
Keywords:
Newton's method
Semilocal convergence
Recurrence relations
Domain of parameters

Abstract

We study the influence of a center Lipschitz condition for the first derivative of the operator involved when the solution of a nonlinear equation is approximated by Newton's method in Banach spaces. As a consequence, we see that the domain of parameters associated to the Newton-Kantorovich theorem is enlarged.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this study we are concerned with the problem of approximating a solution x^{*} of the equation $F(x)=0$, where F is a nonlinear Fréchet differentiable operator defined on a nonempty open convex domain Ω of a Banach space X with values in a Banach space Y. It is usual to approximate x^{*} by using iterative methods. Among these, the best known and most used is Newton's method, whose algorithm is:

$$
\begin{equation*}
x_{0} \text { given in } \Omega, \quad x_{n+1}=x_{n}-\left[F^{\prime}\left(x_{n}\right)\right]^{-1} F\left(x_{n}\right), \quad n=0,1,2 \ldots \tag{1}
\end{equation*}
$$

In this paper, we focus our attention on the analysis of the semilocal convergence of sequence (1), which is based on demanding conditions to the initial approximation x_{0}, from certain conditions on the operator F, and provide the so-called domain of parameters corresponding to the conditions required to the initial approximation that guarantee the convergence of sequence (1) to the solution x^{*}.

The best known semilocal convergence result for Newton's method in Banach spaces is the NewtonKantorovich theorem [1], which is given under the following general conditions:

[^0](A1) There exists $\Gamma_{0}=\left[F^{\prime}\left(x_{0}\right)\right]^{-1} \in \mathcal{L}(Y, X)$, for some $x_{0} \in \Omega$, with $\left\|\Gamma_{0}\right\| \leq \beta$ and $\left\|\Gamma_{0} F\left(x_{0}\right)\right\| \leq \eta$, where $\mathcal{L}(Y, X)$ is the set of bounded linear operators from Y to X.
(A2) There exists a constant $K \geq 0$ such that $\left\|F^{\prime}(x)-F^{\prime}(y)\right\| \leq K\|x-y\|$ for $x, y \in \Omega$.
Theorem 1 (The Newton-Kantorovich Theorem). Let $F: \Omega \subseteq X \longrightarrow Y$ be a once continuously differentiable operator defined on a nonempty open convex domain Ω of a Banach space X with values in a Banach space Y. Suppose that conditions (A1)-(A2) are satisfied. If $K \beta \eta \leq \frac{1}{2}$ and $B\left(x_{0}, t^{*}\right) \subset \Omega$, where $t^{*}=\frac{1-\sqrt{1-2 K \beta \eta}}{K \beta}$, then Newton's sequence, given by (1), converges to a solution x^{*} of the equation $F(x)=0$, starting at x_{0}, and $x_{n}, x^{*} \in \overline{B\left(x_{0}, t^{*}\right)}$, for all $n=0,1,2, \ldots$.

From condition (A2) of the Newton-Kantorovich theorem, we obtain the value of K once F is known. Moreover, every point $x \in \Omega$ such that the operator $\left[F^{\prime}(x)\right]^{-1}$ exists with $\left\|\left[F^{\prime}(x)\right]^{-1}\right\| \leq \beta$ and $\left\|\left[F^{\prime}(x)\right]^{-1} F(x)\right\| \leq \eta$ has associated the pair $(K, \beta \eta)$ of the $x y$-plane, where $x=K$ and $y=\beta \eta$. In addition, if we consider the set

$$
D=\left\{(K, \beta \eta) \in \mathbb{R}^{2}: K \beta \eta \leq \frac{1}{2}\right\},
$$

we can observe that every point x such that the pair associated $(K, \beta \eta)$ belongs to D can be chosen as starting point for Newton's method, so that the method converges to a solution x^{*} of the equation $F(x)=0$ to start on it. As a consequence, we are interested in D is as big as possible, since this fact allows us to find a greater number of good starting points for Newton's method.

The set D associated to the Newton-Kantorovich theorem is called domain of parameters. We can draw D by choosing $x=K$ and $y=\beta \eta$ and coloring the region of the $x y$-plane whose points satisfy the condition $K \beta \eta \leq \frac{1}{2}$ (namely, $x y \leq \frac{1}{2}$) of the Newton-Kantorovich theorem (D is the black region of Figs. 1-2), so that the convergence of Newton's method is guaranteed from this condition. Note that condition (A1), required to the initial approximation x_{0}, define the parameters β and η, and condition (A2), required to the operator F, define the fixed parameter K.

The main aim of this work is to improve the domain of parameters D under conditions (A1)-(A2). To modify the set D, we can use different strategies that change condition (A2), as we can see in [2-5], but these modifications do not increase the size of D. Argyros gives in [2] a procedure to increase the size of D by noticing that, as a consequence of condition (A2), once $x_{0} \in \Omega$ is fixed, the condition

$$
\begin{equation*}
\left\|F^{\prime}(x)-F^{\prime}\left(x_{0}\right)\right\| \leq K_{0}\left\|x-x_{0}\right\|, \quad x \in \Omega \tag{2}
\end{equation*}
$$

is satisfied with $K_{0} \leq K$. In addition, Argyros, under conditions (A1) and (A2) and taking into account (2), proves the semilocal convergence of (1) by using the majorant principle of Kantorovich [6]. The optimum case of Argyros occurs when $K \beta \eta \leq \frac{1}{1+\mu}$, where $\mu=\frac{K_{0}}{K} \in(0,1]$. We can see then that the domain of parameters associated is

$$
D_{1}=\left\{(K, \beta \eta) \in \mathbb{R}^{2}: h=K \beta \eta \leq \frac{1}{1+\mu}, \mu=\frac{K_{0}}{K} \in(0,1]\right\},
$$

which is bigger than that of the Newton-Kantorovich theorem, since $D \subset D_{1}$ for $\mu<1$, as we can see in Fig. 1. In addition, from Fig. 1, we can guess that the smaller the quantity $\mu=\frac{K_{0}}{K} \in(0,1]$ is, the bigger the domain of parameters is: yellow for $\mu=0.75$, red for $\mu=0.5$, green for $\mu=0.25$ and orange for $\mu=0.1$. Besides, if $\mu \rightarrow 1$, the domain of parameters associated to the semilocal convergence result given by Argyros in [2] tends to be that obtained by the Newton-Kantorovich theorem (black region).

In this paper, we prove the semilocal convergence of Newton's method by using a technique based on recurrence relations which takes into account the previous idea introduced by Argyros. As a result, the sizes of D and D_{1} are improved.

Throughout the paper we denote $\overline{B(x, \varrho)}=\{y \in X ;\|y-x\| \leq \varrho\}$ and $B(x, \varrho)=\{y \in X ;\|y-x\|<\varrho\}$.

https://daneshyari.com/en/article/1707682

Download Persian Version:
https://daneshyari.com/article/1707682

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jezquer@unirioja.es (J.A. Ezquerro), mahernan@unirioja.es (M.A. Hernández-Verón).

