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a b s t r a c t

The objective of the present paper is to give an explicit solution to the global stabilization
problem for linear time-varying delay systems with bounded control. Lyapunov function
methodwith LMI techniques are proposed in order to derive novel sufficient conditions for
designing stabilizing feedback control in terms of LMIs. The proposed result is illustrated
through a numerical example.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Global stabilization problem (GSP) of linear systems with bounded control, which concerns the existence of a bounded
feedback controller globally stabilizing the closed-loop system, is one of the important issues in control theory and appli-
cations [1–5]. The control constraints automatically impose limitations on our ability to steer the dynamics of the control
system and usually arise due to the physical limitation of control actuators such as pumps or valves. It iswell established that
neglecting these constraints while designing controllers can lead to significant performance deterioration and even closed-
loop instability. One of the key limitations imposed by constraints is that on the set of initial states that can be steered to
the origin with the available control action. An effective control policy, that takes constraints into account, need provide,
not only the stabilizing feedback control law, but also an explicit characterization of the set of initial conditions, starting
from where closed-loop stability is guaranteed. This realization, together with the prevalence of hard constraints in con-
trol applications, has consequently fostered a large and growing body of research work on control of systems subject to
input constraints. Examples include results on constrained optimal quadratic control [6,7], model predictive control [8] and
feedback stabilization [9–12]. The GSP for linear systems without delays has been solved in existing literature, whereas a
solution to the linear systemswith time delay is not known to our knowledge. To the best of our knowledge, there have been
few research work about the GSP of linear systemswith bounded control, and there is no result so far about the global stabi-
lization of linear systems with both the delay and bounded control. Motivated by these considerations, we have developed
the results in [12] by considering bounded control input and time-varying delay, and designing a new class of nonlinear
stabilizing feedbacks. By constructing a simple set of Lyapunov functionals, some delay-dependent conditions for designing
stabilizing feedback control are obtained in terms of linear matrix inequalities (LMIs), [13].
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The rest of the paper is organized as follows. Section 2 introduces the problem to be treated and some preliminaries. We
present sufficient conditions for global stabilization of linear time-varying the systemwith bounded control and a numerical
example in Section 3. Some conclusions are drawn in Section 4.

2. Preliminaries

The following notations will be used throughout this paper. R+ denotes the set of all nonnegative real numbers; Rn

denotes the n-dimensional space; Rn×m denotes the space of all matrices of (n × m)-dimension; AT denotes the trans-
pose of A; a matrix A is symmetric if A = AT ; I denotes the identity matrix; λ(A) denotes the set of all eigenvalues of A;
λmax(A) = max{Re(λ) : λ ∈ λ(A)}; λmin(A) = min{Re(λ) : λ ∈ λ(A)}; C([−τ , 0], Rn) denotes the set of all Rn-valued
continuous functions on [−τ , 0]; The symmetric terms in a matrix are denoted by ∗. Matrix A is positive definite (A > 0)
if (Ax, x) > 0 for all x ≠ 0. The segment of the trajectory x(t) is denoted by xt = {x(t + s) : s ∈ [−τ , 0]} with the norm
∥xt∥ = sups∈[−τ ,0] ∥x(t + s)∥.

Consider the following linear control time-varying delay system with bounded control

ẋ(t) = Ax(t) + A1x(t − h(t)) + Bu(t), t ≥ 0,
x(t) = φ(t), t ∈ [−h, 0]

(2.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control, A, A1 ∈ Rn×n, B ∈ Rn×m are given constant matrices. We assume that
the matrix A has full column rank. The initial function φ(t) ∈ C([−h, 0], Rn) and h(t) : R+

→ R+ is a continuous function
satisfying

0 ≤ h1 ≤ h(t) ≤ h2, ∀t ≥ 0. (2.2)

The control u(.) is a continuous function satisfying the following condition

∥u(t)∥ ≤ r, ∀t ≥ 0. (2.3)

Definition 2.1. The control system (2.1) is globally stabilizable if there is a feedback control u(t) = k(x(t)) satisfying the
constraint (2.3) such that the resulting closed-loop system:

ẋ(t) = Ax(t) + A1x(t − h(t)) + Bk(x(t)), t ∈ R+

is globally asymptotically stable.

Proposition 2.1 (Schur Complement Lemma [14]). Given constant matrices X, Y , Z with appropriate dimensions satisfying
X = XT and Y = Y T > 0, then X + ZTY−1Z < 0 if and only if

X ZT

Z −Y


< 0.

Proposition 2.2 (Integral Inequality [15]). For any constant matrix Z = ZT > 0 and a number h > 0 such that the following
integrations are well defined, we have

h
 t

t−h
x(s)TZx(s)ds ≥

 t

t−h
x(s)ds

T

Z
 t

t−h
x(s)ds


, t ≥ 0.

3. Stabilizability conditions

In this section, we study the global stabilization of system (2.1) and give sufficient conditions for designing feedback
controllers in terms of LMIs. Firstly, we prove the existence of solutions of the closed-loop system using nonlinear state
feedback control:

u(t) = −
r

1 + ∥BTPx(t)∥
BTPx(t), t ≥ 0. (3.1)

Lemma 3.1. By the state feedback control (3.1), the nonlinear closed-loop system

ẋ(t) = Ax(t) + A1x(t − h(t)) − r
BBTPx(t)

1 + ∥BTPx(t)∥
, t ∈ R+,

has a unique solution on R+.



Download English Version:

https://daneshyari.com/en/article/1707716

Download Persian Version:

https://daneshyari.com/article/1707716

Daneshyari.com

https://daneshyari.com/en/article/1707716
https://daneshyari.com/article/1707716
https://daneshyari.com

