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a b s t r a c t

In this paper, we present an efficient method for nonnegative matrix factorization based
on the alternating nonnegative least squares framework. Our approach adopts a mono-
tone projected Barzilai–Borwein (MPBB)method as an essential subroutine where the step
length is determinedwithout line search. The Lipschitz constant of the gradient is exploited
to accelerate convergence. Global convergence of the proposed MPBB method is estab-
lished. Numerical results are reported to demonstrate the efficiency of our algorithm.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nonnegative matrix factorization (NMF) [1,2] is to approximate a given matrix V ∈ Rm×n, V ≥ 0 by the product of two
nonnegative matrices W ∈ Rm×r and H ∈ Rr×n with r ≪ min{m, n} being a specified positive integer. Using the Frobenius
norm to measure the distance between V and WH , NMF can be formulated as:

min
W , H

F(W ,H) :=
1
2
∥V − WH∥

2
F

s.t. W ∈ Rm×r
+

, H ∈ Rr×n
+

.
(1)

NMF has received considerable attention in the past decade due to its usefulness in dimension reduction of image, text,
and signal data, see [3–8] and references therein. Numerous algorithms have been proposed for solving (1). Lee and Seung [9]
developed the multiplicative update (MU) algorithm which updates the two matrices by multiplying each entry with a
positive factor in each iteration. Although MU is easy to implement, it has been observed to converge relatively slowly,
especially when dealing with dense matrices [3,10,11]. Paatero and Tapper [2] suggested to use the alternating nonnegative
least squares (ANLS) framework:

W k+1
= argmin

W≥0
F(W ,Hk), (2)

Hk+1
= argmin

H≥0
F(W k+1,H). (3)

Notice that problem (1) is nonconvex and NP-hard [12]. The ANLS framework allows us to solve two convex subproblems
(2) and (3) for which optimal solutions can be found. Recently, Grippo and Sciandrone [13] proved the convergence of the
ANLS framework to a stationary point of (1).

Clearly, at each iteration, themain cost of the ANLS framework is in solving the subproblems (2) and (3). Many algorithms
aim to solve the two subproblems efficiently have been developed, for example, the active set method [14], the projected
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gradient (PG) method [11], the projected Barzilai–Borwein (BB) method [15], the projected Newton method [16], and the
projected quasi-Newton method [10,17]. Guan et al. [18] pointed out that these methods may be inefficient because of
using time consuming line searches. They applied Nesterov’s optimal gradient method (OGM) [19] to solve the subproblems
without line search and developed the NeNMF solver. However, it was observed by Huang et al. [20] that OGM may take
thousands of iterations to reach a given tolerance which will degrade the efficiency of NeNMF. In [20], the authors proposed
a quadratic regularization projected Barzilai–Borwein (QRPBB) method. By making use of the Lipschitz constant of the
gradient, the QRPBB method improves the performance of the projected BB method significantly and outperforms other
three solvers including PG, APBB2 [15], and NeNMF. However, the QRPBB method has to calculate two projections and two
gradients at each iteration which is expensive for a large matrix. Moreover, it needs to perform a nonmonotone line search
to determine the step length at each iteration.

In this paper, follow the ANLS framework, we present an efficient monotone projected BB (MPBB) method to solve the
subproblems. The MPBB method exploits the Lipschitz constant of the gradient and makes use of the two BB stepsizes [21]
alternately to accelerate convergence. Unlike the QRPBBmethod, ourMPBBmethod only computes two projections and two
gradients at even steps. Moreover, the proposed MPBB method determines the step length without using any line search.
Global convergence of the MPBB method is established. Numerical results are reported to demonstrate the efficiency of our
algorithm.

As is well known that BB-like methods are often more efficient with nonmonotone schemes. We will show by experi-
ments that our MPBB method outperforms the APBB2 method which employs the Grippo–Lampariello–Lucidi nonmono-
tone line search [22]. Our results provide the possibility that, by proper modification, monotone BB-like methods can win
the nonmonotone ones in some cases.

The rest of this paper is organized as follows. Section 2 introduces the MPBB method for solving the subproblems and
presents its global convergence result. Experimental comparisons among several NMF solvers are presented in Section 3.

2. Monotone projected Barzilai–Borwein method and its convergence

Since W and H is perfectly symmetric, we focus only on the update of the matrix W . At the kth iteration of the ANLS
framework, we have to solve

min
W≥0

f k(W ) := F(W ,Hk) =
1
2
∥V − WHk

∥
2
F . (4)

To simplify the notation, we use f (W ) rather than f k(W ) in the rest of the paper.
Let P(·) be the operator that projects all the negative entries of an input matrix to zero. It is well known that W is a

stationary point of (4) if and only if, for any fixed α > 0,

∥P [W − α∇f (W )] − W∥F = 0. (5)
By Lemma 1 in [20], we know that f (W ) is convex and its gradient ∇f (W ) is Lipschitz continuous with constant L =

∥Hk(Hk)T∥2. Since Hk(Hk)T is an r × r matrix and r ≪ min{m, n}, the Lipschitz constant L is not expensive to obtain.
Our monotone projected Barzilai–Borwein (MPBB) method is presented in Algorithm 1, where W k and Hk are obtained

from the previous iteration in the ANLS framework.

Algorithm 1. Monotone projected BB method
Step 1. Choose constants σ ∈ (0, 1), αmax > αmin > 0. Compute L = ∥Hk(Hk)T∥2. SetW0 = W k, α0 = 1, and t = 0.
Step 2. IfWt is a stationary point of (4), stop.
Step 3. If t is odd, set Zt = Wt ; otherwise, compute Zt by

Zt = P

Wt −

1
L
∇f (Wt)


. (6)

Step 4. ComputeDt = P[Zt −αt∇f (Zt)]−Zt and δt = ⟨Dt ,Hk(Hk)TDt⟩. If δt = 0, set λt = 1; otherwise, set λt = min{λ̃t , 1},
where

λ̃t = −
(1 − σ)⟨∇f (Zt),Dt⟩

δt
. (7)

SetWt+1 = Zt + λtDt .
Step 5. Define St = Wt+1 − Wt and Yt = ∇f (Wt+1) − ∇f (Wt). If ⟨St , Yt⟩ ≤ 0, set αt+1 = αmax; otherwise, compute

αBB
t+1 =


⟨St , St⟩
⟨St , Yt⟩

, for odd t;

⟨St , Yt⟩

⟨Yt , Yt⟩
, for even t .

(8)

Set αt+1 = min{αmax,max{αmin, α
BB
t+1}}.

Step 6. Set t = t + 1 and go to Step 2.
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