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a b s t r a c t

Let A be a square matrix with some special Jordan forms. When A is nonsingular, we find
all the solutions of the quadratic matrix equation AXA = XAX , which commute with A. We
also find infinitely many solutions commuting with A, depending on several parameters,
when A is singular.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We are interested in finding the solutions of the quadratic matrix equation

AXA = XAX, (1)

where both the given A and the unknown X are n × n complex matrices. This equation is called here the Yang–Baxter
matrix equation since it is similar in format to the one in the parameter-free Yang–Baxter equation. In the fields of statistical
mechanics, knot theory, braid groups, and quantum theory, the Yang–Baxter equation has been a hot research topic [1], but
in matrix theory, this special quadratic matrix equation has not been systematically studied yet. One reason is the fact that
finding all the solutions is a difficult task.

Some results on solving the Yang–Baxter matrix equation have been obtained in [2,3] with various techniques, such as
Brouwer’s fixed point theorem, the mean ergodic theorem, and the spectral theorem.

In a recent paper [4], it was proved that a matrix B is a solution of (1) if it satisfies the condition AB = BA = B2. A solution
of (1) that commuteswith A is called a commuting solution. Based on this general result, several explicit commuting solutions
were obtained when A has only one eigenvalue with some particular Jordan blocks.

If A is a block diagonal matrix such that its diagonal blocks are of the same structure as studied in [4], then all the block
diagonal matrices of the same size, whose diagonal blocks are the solutions of (1) from [4] associated with the diagonal
blocks of A, must be commuting solutions of (1). The question is whether we can find all commuting solutions. In this note
we answer this question when A is nonsingular with some special Jordan structure. Using a general result in matrix theory,
we could show that when there are several eigenvalues, it is possible to find commuting solutions since that system turns
out to be a block diagonal one.

In the next section we prove two theorems on communing solutions of (1) after establishing a preliminary result.
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2. Commuting solutions

In order to find all commuting solutions of the Yang–Baxter matrix equation, we need several lemmas on solving the
linear matrix equation

HX = XK , (2)

where H is an h × hmatrix and the matrix K is k × k.
We denote a k × k Jordan block with eigenvalue λ by Jk(λ), that is, Jk(λ) is the zero matrix with the diagonal and super-

diagonal replaced with all λ’s and all 1’s respectively. We also write Jk(λ) as J(λ) if its size is not specified.
The following result was proved, for example, in [5]. But here we present a simpler proof.

Lemma 2.1. Let X be a h × k matrix and let c be a nonzero number. Then X = 0 is the only solution of the following equation

XJk(0) − Jh(0)X = cX . (3)

Proof. It is easy to show that

Jk(0)

k
= 0. Let X be any solution of (3). Using the fact XJk(0) =


cI + Jh(0)


X repeatedly for

k times leads to

0 = X

Jk(0)

k
= XJk(0) ·


Jk(0)

k−1
=


cI + Jh(0)


X ·


Jk(0)

k−1

= · · · =

cI + Jh(0)

k−1
X · Jk(0) =


cI + Jh(0)

k
X .

Clearly, cI + Jh(0) is a nonsingular matrix, so is

cI + Jh(0)

k
. Multiplying


cI + Jh(0)

−k
from left to the above equality, we

have X = 0. �

Lemma 2.2. Suppose that H and K have no common eigenvalues. Then thematrix equation (2) has only the trivial solution X = 0.

Proof. Let JH and JK be the Jordan forms of H and K , respectively. Then there are nonsingular matrices P and Q such that
H = PJHP−1 and K = QJKQ−1. The equation HX = XK for X is equivalent to the equation JHY = YJK for Y with Y = P−1XQ .
Write

JH = diag(Jh1(λ1), . . . , Jhr (λr)) and JK = diag(Jk1(µ1), . . . , Jks(µs)).

Partitioning Y = [Yij] accordingly as an r × s block matrix, and multiplying out the equation JHY = YJK via block matrix
multiplications, we obtain a family of rs matrix equations

Jhi(λi)Yij = YijJkj(µj), i = 1, . . . , r; j = 1, . . . , s.

Since Jhi(λi) = λiI + Jhi(0) and Jkj(µj) = µjI + Jkj(0), where I is an identity matrix of suitable size, the above equations can
be written as

(λi − µj)Yij = YijJkj(0) − Jhi(0)Yij, ∀ i, j.

Now the assumption that λi ≠ µj for i = 1, . . . , r and j = 1, . . . , s and Lemma 2.1 imply that the above equations have
only zero solutions. Hence Y = 0, so X = PYQ−1

= 0. �

Remark 2.1. When H and K have common eigenvalues, the structure of the solutions to (2) was obtained in [5]
(Theorem 5.16).

Lemma 2.3. Let a block diagonal matrix H = diag(H1, . . . ,Ht) be such that no pairs Hi and Hj have common eigenvalues for
i ≠ j. If HK = KH, then K = diag(K1, . . . , Kt), where Ki has the same size as Hi for i = 1, . . . , t.

Proof. Partitioning K = [Kij] according to the block structure of H , we multiply out the equation

diag(H1, . . . ,Ht)[Kij] = [Kij]diag(H1, . . . ,Ht)

to give the equations

HiKij = KijHj, i, j = 1, . . . , t.

Now, for i ≠ j, since Hi and Hj have no common eigenvalues, Lemma 2.2 guarantees that Kij = 0. This shows that K is block
diagonal.

Now we apply Lemma 2.3 to solving the Yang–Baxter matrix equation (1) for some cases. It is difficult to find all the
solutions of the nonlinear matrix equation for a general matrix A since the solutions form disconnected manifolds of com-
plicated structure, which can be seen even for the 2 × 2 case from [4]. Here our focus is to find the commuting solutions of
(1), that is, the matrices X that satisfy the two equations AX = XA and AXA = XAX .
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