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a b s t r a c t

A bistable nonlocal reaction–diffusion equation is studied. Solutions in the form of simple
and periodic travelling waves, single and multiple pulses are observed in numerical sim-
ulations. Successive transitions from simple waves to periodic waves and to stable pulses
are described.
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1. Introduction

Nonlocal reaction–diffusion equations

∂u
∂t

= d
∂2u
∂x2

+ au2(1 − J(u))− σu, (1.1)

where

J(u) =


∞

−∞

Φ(x − y)u(y, t)dy,

describes various biological phenomena such as emergence and evolution of biological species and the process of speciation
in a more general context [1,2]. An important property of such equations is that they have solutions in the form of periodic
travellingwaves [3–5]. Such solutions do not exist for the usual (scalar) reaction–diffusion equations. In thisworkwepresent
a new type of solutions of this equation, single and multiple pulses, and show how they are related to periodic travelling
waves. We will consider the kernelΦ(x) in two different forms. In the first case, we setΦ = φ, where

φ(x) =


1/(2N), |x| < N
0, |x| ≥ N

is a step-wise constant function. In the limit of small N we obtain the reaction–diffusion equation

∂u
∂t

= d
∂2u
∂x2

+ au2(1 − u)− σu. (1.2)

It is well known that it can have travellingwave solutions and solutions in the form of stationary pulses, that is positive solu-
tions decaying at infinity. Travellingwaves are asymptotically stablewith shift while pulses are unstable. Existence of waves
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for the nonlocal equation (1.1) is proved for sufficiently small N [3,4]. Existence of waves for some other nonlocal equations
can be proved without the assumption that the support of the kernel is small [6,7]. Existence of pulses can also be proved
for the kernels with a small support. Moreover, travelling waves are stable if N is small enough and pulses are unstable.

The second limiting case of Eq. (1.1) is that of largeN . Instead of the kernelφ(x)wenow consider the kernelΦ(x) = ψ(x),
where ψ(x) = 1 for |x| < N and 0 for |x| ≥ N . The limiting equation becomes

∂u
∂t

= d
∂2u
∂x2

+ au2(1 − I(u))− σu, I(u) =


∞

−∞

u(y, t)dy. (1.3)

This equation does not have travelling waves but it has stationary pulses. The integral term in this equation can make them
stable [1]. Therefore we can expect that stable pulses also exist for Eq. (1.1) if N is sufficiently large [8].

Thus, for sufficiently small N nonlocal equation (1.1) has stable waves and unstable pulses. For sufficiently large N , it can
have stable pulses but there are no waves. In this work we will study transition of solutions of this equation from stable
waves to stable pulses as N increases.

2. Travelling waves

If σ/a < 1/4, then Eq. (1.1) has three homogeneous in space stationary solutions, u+ = 0, and two other solutions u0 and
u−, u0 < u−, of the equation u(1− u) = σ/a. The homogeneous in space stationary solution u = u− of Eq. (1.1) can lose its
stability resulting in appearance of periodic in space solutions [9–11]. If we consider a localized in space perturbation of this
homogeneous in space solution, then it propagates as a periodic wave. The speed and the amplitude of this wave depend on
parameters. In the linear approximation, the speed can be estimated through the maximal positive eigenvalue [12].

Let c0 be the speed of the wave with the limitsw(±∞) = u±, which exists at least for sufficiently small N , and cp be the
average speed of the periodic wave which effectuates transition from u− to the periodic in space stationary solution. If the
support N of the kernel φ(x) decreases and tends to the critical value for which this periodic stationary solution bifurcates
from the homogeneous in space solution, then the speed of the periodic wave converges to zero. Therefore for sufficiently
small N , c0 > cp, and the [u+, u−]-wave runs away from the periodic wave.

Fig. 1 shows different regimes of wave propagation. If the solution u− is stable, then there is a [u+, u−]-wave with the
limits u± at ±∞. It is not monotone with respect to x. The green lines in the left figure show the position of the maxima of
solution. Theymove altogetherwith thewave front. IfN is greater than the critical valueNc ≈ 3.6, then the homogeneous in
space stationary solution becomes unstable and a periodic in space stationary solution emerges behind the [u+, u−]-wave. If
N is close to the critical value, then the amplitude and the speed of propagation of the periodic wave are small. It propagates
slower than the [u+, u−]-wave (Fig. 1, middle). For a greater N , they propagate with the same speed but the periodic wave
stays at some distance behind the [u+, u−]-wave (Fig. 1, right). Its influence is exponentially small, and the [u+, u−]-wave
can still be considered as having a constant speed and profile. Finally for sufficiently large values of N , the two waves merge
forming a single periodic wave (Fig. 2, middle).

3. Single and multiple pulses

3.1. Unstable pulses

Consider the equation

dw′′
+ aw2(1 − w)− σw = 0. (3.1)

Set F(w) = aw2(1−w)−σw. If
 u−

0 F(u)du > 0, then it has a positive solutionw0(x)which decays at infinity. This solution
is unstable since the corresponding linearized operator has a positive eigenvalue [1]. Along with Eq. (3.1) we consider the
corresponding nonlocal equation

dw′′
+ aw2(1 − J(w))− σw = 0, J(w) =


∞

−∞

φ(x − y)w(y)dy. (3.2)

It can be proved by the perturbation technique similar to travelling waves [3,4] that for all N sufficiently small there exists
a pulse solution of this equation. The proof uses the implicit function theorem and the spectral properties of the linearized
operator. This pulse solution is unstable for sufficiently small N .

3.2. Stable pulses

Next, consider the equation

∂u
∂t

= d
∂2u
∂x2

+ au2(1 − K(u))− σu, K(u) =


∞

−∞

ψ(x − y)u(y, t)dy, (3.3)
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