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a b s t r a c t

In the context of inverse or parameter estimation problems we demonstrate the use of
statistically basedmodel comparison tests in several examples of practical interest. In these
exampleswe are interested in questions related to information content of a particular given
data set and whether the data will support a more complicated model to describe it. In the
first examplewe compare fits for several differentmodels to describe simple decay in a size
histogram for aggregates in amyloid fibril formation. In a second example we investigate
whether the information content in data sets for the pest Lygus hesperus in cotton fields as
it is currently collected is sufficient to support amodel in which one distinguishes between
nymphs and adults. Finally in a third example with data for patients having undergone an
organ transplant, we question whether the data content is sufficient to estimatemore than
5 of the fundamental parameters in a particular dynamic model.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty quantification in the context of estimation of parameters has become a focus of increased attention in recent
years. As mathematical models become more complex with multiple states and many parameters to be estimated using
experimental data, there is a need for critical analytical tools in model validation related to the reliability of parameter
estimates obtained inmodel fitting. Methodology is desirable to distinguish between lack of identifiability in amodel (often
formulated in a generalized algebraic context) vs. local insensitivity with respect to changes in particular parameters vs.
lack of information content in a given data set. A recent concrete example involves previous HIV models [1,2] with 15
or more parameters to be estimated. In [3], using recently developed parameter selectivity tools [4] based on parameter
sensitivity based scores, the authors showed that many of the parameters could not be estimated with any degree of
reliability. Moreover, it was found that quantifiable uncertainty varies among patients depending upon the number of
treatment interruptions (perturbations of therapy). This leads to a fundamental question of how much information with
respect to model validation can be expected in a given data set or collection of data sets. In this note, we consider one tool
that may be used in attempts to answer this question.
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Here we demonstrate the use of statistically based model comparison tests in several examples of practical interest. In
these examples we are interested in questions related to information content of a particular given data set and whether
the data will support a more detailed or sophisticated model to describe it. In the first example we compare fits for several
different models to describe simple decay in a size histogram for aggregates in amyloid fibril formation. In a second exam-
ple we investigate whether the information content in data sets for the pest Lygus hesperus in cotton fields as it is currently
collected is sufficient to support a model in which one distinguishes between nymphs and adults. Finally in a third example
with data for patients having undergone an organ transplant we question whether the data content is sufficient to estimate
more than 5 of the fundamental parameters in a specific dynamic model. In the next section we recall the fundamental tests
to be employed here.

2. Summary of ANOVA type statistical comparison tests

In general, assume that we have an inverse problem for the model observations f (t, q) and are given n observations. We
define

Jn(q) = Jn(Y, q) =
1
n

n
j=1

[Yj − f (tj, q)]2 (1)

where our statistical model has the form

Yj = f (tj, q0) + Ej, j = 1, . . . , n.

Here, q0 is the ‘‘true’’ value of qwhich we assume to exist. We use Q to represent the set of all the admissible parameters q.
We make the standard statistical assumptions [5–7]:

• (A1) The random variables {Ej}
∞

j=1 are independent and identically distributed with E(Ej) = 0 and Var(Ej) = σ 2.
• (A2) Q is a compact subset of Euclidean space of Rp and f (t, q) is continuous on [0, T ] × Q.
• (A3) Observations are at {tj}nj=1 in [0, T ]. For some finite measure µ on [0, T ],

1
n

n
j=1

h(tj) −→

 T

0
h(t)dµ(t)

as n → ∞, for all continuous functions h.
• (A4) J0(q) =

 T
0 (f (t, q0) − f (t, q))2dµ(t) = σ 2 has a unique minimizer in Q at q0.

Let qn = qnOLS(Y) be the OLS estimator for Jn with corresponding estimate

q̂n = qnOLS({yj})

for a realization y = {yj}. That is,

qn(Y) = argmin
q∈Q

Jn(Y, q)

and

q̂n = argmin
q∈Q

Jn(y, q).

One can then establish a series of useful results (see [5,6] for detailed proofs; see also [8]).

Theorem 2.1. Under (A1)–(A4), qn = qnOLS(Y) −→ q0 as n → ∞ with probability 1.

Wewill need further assumptions to precede (these will be denoted by (A7)–(A11) to facilitate reference to [5,6]). These
include:
• (A7) Q is finite dimensional in Rp and q0 ∈ int Q.
• (A8) f : Q → C[0, T ] is a C2 function.
• (A10) J =

∂2J0
∂q2

(q0) is positive definite.
• (A11) QH = {q ∈ Q|Hq = c} where H is an r × pmatrix of full rank, and c is a known constant.

In many instances, including the motivating examples discussed here, one is interested in using data to question whether
the ‘‘true’’ parameter q0 can be found in a subsetQH ⊂ Qwhichwe assume for discussions here is defined by the constraints
of assumption (A11). Thus, we want to test the null hypothesis H0: q0 ∈ QH .

Define then

qnH(Y) = arg min
q∈QH

Jn(Y, q)

and

q̂nH = arg min
q∈QH

Jn(y, q)



Download English Version:

https://daneshyari.com/en/article/1707777

Download Persian Version:

https://daneshyari.com/article/1707777

Daneshyari.com

https://daneshyari.com/en/article/1707777
https://daneshyari.com/article/1707777
https://daneshyari.com

