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1. Introduction and main results

Consider the existence of minimal periodic solutions for the following Hamiltonian systems

ii+V =0, VueRV, (1)

where V e C'(RY, R) and V’(u) denotes the gradient of V (1) in u.

As for the existence of minimal periodic solution of systems (1) the pioneer work should trace back to [1]. Using calculus of
variations approach, Rabinowitz [ 1] established the existence of nonconstant prescribed periodic solutions of (1). Moreover,
Rabinowitz conjectured that system (1) possesses a nonconstant solution with any prescribed minimal period under his
conditions. Since then, many mathematicians began to study the minimal period problem, see [2-27], and references therein.
Among all these results, most of them studied various convex Hamiltonian systems. There are only a few papers dealing with
the nonconvex case (see [6-15]). Recently, Long [14] applied some ideas of [12,13,28] to the classical Hamiltonian systems
without any convexity assumptions, and proved the existence of nonconstant solutions with prescribed minimal period for
system (1). In this paper, motivated by [14], we consider the existence of minimal periodic solutions for systems (1). Our
main results are the following theorems.

Theorem 1.1. FixT > 0 and set w = 27 /T. Suppose that V satisfies the following conditions:
(V1) V e CY(RN, R) and it is even, i.e. V(—x) = V(x) forany x € R";
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Then, the system (1) possesses an odd nonconstant periodic solution u with minimal period T.

Corollary 1.2. Suppose that V satisfies (V1) and the following conditions:

(Va)
V(x)
—— — 0 as|x| = oo;
|x|?

(Vs)
V(x)
— — 400 as x| — 0.
|x|?

Then, for every T > 0, the system (1) possesses an odd nonconstant periodic solution u with minimal period T.

Remark 1.3. The previous corollary has been already stated by Long in [14, Corollary 3] (see also [8] for a related result
when V is bounded). On the other hand, Long [ 14] proved Theorem 1.1 replacing condition (V5 ) by a stronger condition that
there exist constants a; and 0 < a; < ? such that

a
Vx) < 52|x|2 +a, VxeRV.

2. Proof of main results

Let us consider the functional ¢ on H; given by

1 T T
o =5 [ i - [ v
2 0 0
for each u € H;, where
H} = {u :[0,T] — RN | u is absolutely continuous, u(0) = u(T), it € L*(0, T; RN)}

is a Hilbert space with the norm defined by

T T 3
lull = ([ |u(t)|*dt +/ |ﬂ(f)|2df) .
0 0

The functional ¢ is continuously differentiable and weakly lower semicontinuous on HTl. Moreover, we have

T T
(@), v) = / (@t). H(0)dt — / V' @(®), v(O)dt
0 0

forallu, v € Hj. Let Xr be the subspace of H; defined by
Xr = {u € H}| u(T — t) = —u(t) fora.e. t € [0, T]}.

Then X7 is a closed subspace ofHT1 and, therefore, is a Hilbert space. Moreover, u(0) = u(T) = Oforallu € Xr, hence the norm

T 1/2
lullr = ( f |a(r)|2dr)
0

is equivalent to the norm || - || on Xr.
Before giving the proof of our main results, we need the following lemma.

Lemma 2.1. Suppose that (V;) holds. Then ¢ € C'(Xr, R), and u € Xy is a critical point of ¢ restricted to Xy if and only if it is
an odd C2-solution of (1).

Proof. See [8, Lemma 1.2] (see also [ 14, Proposition 4] for a more general non-autonomous bi-even potential V(t, x)). O
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