
Applied Mathematics Letters 42 (2015) 47–52

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On the finite time blow-up for filtration problems with
nonlinear reaction
K. Fellner a, E. Latos a,∗, G. Pisante b

a Institute for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Heinr. 36 - A-8010 Graz, Austria
b Department of Mathematics and Physics, Seconda Università degli Studi di Napoli, Viale Lincoln, 5 - 81100 Caserta, Italy

a r t i c l e i n f o

Article history:
Received 4 October 2014
Received in revised form 5 November 2014
Accepted 5 November 2014
Available online 21 November 2014

Keywords:
Finite time blow-up
Filtration problem
Nonlinear diffusion
Robin boundary conditions
Reaction diffusion problems
Maximal solutions

a b s t r a c t

We present results for finite time blow-up for filtration problems with nonlinear reaction
under appropriate assumptions on the nonlinearities and the initial data. In particular, we
prove first finite time blow-up of solutions subject to sufficiently large initial data provided
that the reaction term ‘‘overpowers’’ the nonlinear diffusion in a certain sense. Secondly,
under related assumptions on the nonlinearities, we show that initial data above positive
stationary state solutions will always lead to finite time blow-up.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we shall study the blow-up of solutions u = u(x, t) to the following filtration problem

ut = ∆K(u)+ λf (u), x ∈ Ω, t > 0, (1a)

B(K(u)) ≡ n̂ · ∇K(u)+ β(x)K(u) = 0, x ∈ ∂Ω, t > 0, (1b)

u(x, 0) = u0(x) ≥ 0, x ∈ Ω, (1c)

whereΩ is a bounded domain of RN with sufficient smooth boundary ∂Ω and n̂ denotes the outer unit normal vector.
In problem (1), the non-linear functions f and K , are supposed to be in C3(R) and to satisfy the following positivity,

growth, monotonicity and convexity assumptions:

K(0) ≥ 0, K(s) > 0, for s ∈ R+, and K ′(s), K ′′(s) > 0, for s ∈ R+

0 , (2)

f (s) > 0, f ′(s) > 0, f ′′(s) > 0, for s ∈ R+

0 , (3)
∞

0

K ′(s)
f (s)

ds < ∞, which implies


∞

0

ds
f (s)

< ∞. (4)

Moreover, we assume the constant λ > 0 to be positive and the coefficient 0 ≤ β(x) ≤ ∞ to be in C1+α(∂Ω) for α > 0
wherever it is bounded. Note that β ≡ 0, β ≡ ∞ and 0 < β < ∞ specify homogeneous Neumann, Dirichlet and Robin
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boundary conditions, respectively. Moreover, this type of conditions are a consequence of Fourier’s law for diffusion when
considering either conservation of mass, or conservation of energy (see for example [1]).

We remark that by imposing non-negative initial data u0(x) ≥ 0, the assumed positivity f (u) > 0 implies the positivity
of solutions to (1), i.e. u > 0 inΩ for t > 0. For the existence of a unique classical local solution u ∈ C2,1(ΩT ) to problem
(1)–(3) we refer to [1–6] and the references therein.

Under the Osgood type condition (4), which is necessary for the blow-up of solutions, the filtration problem (1) will
exhibit a blow-up behaviour if the forcing term is sufficiently ‘‘strong’’ and the initial data are sufficiently ‘‘large’’. This
can be illustrated by the following example, which applies Kaplan’s method, i.e. it investigates the evolution of the Fourier
coefficient

B(t) :=


Ω

u(x, t) φ(x) dx, Ḃ(t) =


Ω

∆K(u) φ dx + λ


Ω

f φ dx, (5)

where the assumptions on β ensure that φ(x) can be chosen as the positive (in Ω) and L1-normalised (i.e. ∥φ∥1 = 1)
eigenfunction corresponding to the first eigenvalue µ of the following auxiliary elliptic problem with Robin boundary
conditions:

∆φ + µφ = 0, x ∈ Ω,
n̂ · ∇φ + β(x)φ = 0, x on ∂Ω. (6)

After integration by parts in (5) and using the eigenvalue problem (6) we obtain Ḃ(t) = −µ

Ω
K φ dx + λ


Ω
f φ dx. Hence,

a comparison condition between f and K of the following kind

∀t > 0,

Ω

(f (u(x, t))− K(u(x, t))) φ(x) dx ≥ 0 (7)

yields, for λ > µ and by applying Jensen’s inequality, Ḃ(t) ≥ (λ− µ)

Ω
f (u(x, t)) φ(x) dx ≥ (λ− µ)f (B).

Thus, theOsgood type condition (4) implies the finite-time blow-up of B(t) (cf. [2, Section 4.1]).Moreover, as a by-product
of Kaplan’s method, the first eigenvalue µ provides a lower bound µ < λ, above which blow-up occurs.

These phenomena are connected with the existence of solutions to the steady-state problem corresponding to (1),
∆(K(w))+ λf (w) = 0, x ∈ Ω,
B(K(w)) = 0, x ∈ ∂Ω.

(8)

It has been shown in [2], in the closed spectrum case scenario, that problem (8) exhibits a critical (i.e maximal) value of the
parameter λ, say λ∗, such that (any kind of) solution to (8) does not exist for λ > λ∗, while there exist bounded solutions
to (8) for all 0 < λ ≤ λ∗. In fact, there exist at least two solutions to (8) for λ close to λ∗. The case of steady-state solutions
to the critical parameter λ∗ is more intricate, see [2,3]. Since µ ≥ λ∗ (see [7,8] or [2] for a proof under the additional
assumption (7)), Kaplan’s method is in general not sharp enough to treat the full supercritical range λ > λ∗. Nevertheless, in
[2, Section 4.2] it has been shown under a mild extra condition on f and K that for all λ > λ∗ blow-up of solutions of (1)
subject to any initial data u0 ≥ 0 occurs (see also [9–11]).

The aim of this work is to complement the analysis of blow-up of solutions for the above filtration problem (1). In a first
result (see Theorem 1), we shall assume generalised comparison conditions and characterise sufficiently large initial data
such that the solution to (1) blows up in finite time even in the subcritical region λ < λ∗. Moreover, in Theorem 3, we shall
prove that solutions of (1) subject to initial data above the positive solution of the steady state problem (which exists since
λ < λ∗) blow up in finite time.

2. Blow-up analysis

In the subcritical case λ < λ∗, the large-time behaviour of solutions to the semi-linear filtration problem (1)–(3) depends
strongly on the initial data u0. In particular, as one would expect, blow-up occurs for large enough initial data. A first result
in this direction can again be proven by Kaplan’s method. More precisely, we can state the following:

Theorem 1 (Subcritical Blow-Up for Large Initial Data). Let the assumptions (2)–(4) hold. Let µ be the first eigenvalue of the
problem (6) and φ be the corresponding positive normalised eigenfunction. Let u(x, t) denote the solution of (1). Assume either
that there exists a concave function ψ : R+ → R+ satisfying γ := lim sups→∞

ψ(s)
s < λ

µ
and such that

Ω

[ψ(f (u(x, t)))− K(u(x, t))]φ(x) dx ≥ 0, ∀t > 0, (9)

or that there exists a convex function ϕ : R+ → R+ with ϕ(0) = 0, κ := lim infr→∞
ϕ(r)
r >

µ

λ
such that

Ω

[f (u(x, t))− ϕ(K(u(x, t)))]φ(x) dx ≥ 0, ∀t > 0, and assume that


∞

1

ds
K(s)

< ∞. (10)

Then, the solution u(x, t) of (1)–(3) blows up in finite time, provided that the initial data u0 ≥ 0 are sufficiently large.
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