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a b s t r a c t

The implicit finite difference scheme with the shifted Grüwald formula for discretizing the
fractional diffusion equations (FDEs) often results in the ill-conditioned non-Hermitian
Toeplitz systems. In the present paper, we consider to solve such Toeplitz systems by
exploiting the preconditioned GMRES method. A k-step polynomial preconditioner is de-
signed based on the circulant and skew-circulant splitting (CSCS) iteration method pro-
posed by Ng (2003). Theoretical and experimental results involving numerical solutions
of FDEs demonstrate that the proposed k-step preconditioner is efficient to accelerate the
GMRES solver for non-Hermitian Toeplitz systems.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are interested in the iterative solvers for non-Hermitian Toeplitz systems arising in the numerical
solutions of FDEs via finite difference method; see [1,2] and references therein. We also denote the Toeplitz system as the
following form of matrices product

Au = f , A ∈ Cn×n nonsingular, and u, f ∈ Cn, (1)

where A is said to be Toeplitz if A = [Aij]
n
i,j=1 = [ai−j], i ≥ j, i.e., A is constant along its diagonals; see [3,4]. Toeplitz systems

also come from a variety of other applications in mathematics and engineering, see for instance the references in [3,4].
These applications have motivated both mathematicians and engineers to develop specific algorithms catering to solving
Toeplitz systems. As we know, the Krylov subspace methods require in each iteration step only products of A with vector
and since A is Toeplitz these products can be computed in O(n log n) operations via using the fast Fourier transforms (FFTs).
However, in order to reduce the number of iterations, iterative method must be chosen with suitable preconditioning in
general. The construction of ‘‘efficient’’ preconditioners is the purpose of this paper. Although there exists a rich literature on
Hermitian Toeplitz systems (see [3,4] and the references therein), only a few papers consider the non-Hermitian case [5–13].
For Hermitian positive definite Toeplitz matrices, the spectra of the circulant preconditioned Toeplitz matrices are shown
to be clustered. It is clear how this affects the convergence of the PCG method. However, for the non-Hermitian case, it is
not clear how the clustered eigenvalues affect the convergence of the Krylov subspace methods [3, pp. 74–79]. So searching
the efficient preconditioners for non-Hermitian Toeplitz systems is still a promising topic.
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The polynomial preconditioner is a kind of popular and interesting preconditioner inwhich themain issue is that efficient
splitting of the coefficient matrix A is required and a suitable splitting iteration method needs to be used; see, for instance,
[14–18]. Suppose that A = M −N represents a splitting of matrix A and Ω = M−1N , whereM is nonsingular. If the spectral
radius of Ω , denoted by ρ(Ω), is less than one, i.e., ρ(Ω) < 1, the inverse of A can be written as A−1

= (


∞

j=0 Ω j)M−1. We
take Pk = M(I+Ω +Ω2

+· · ·+Ωk−1)−1 as an approximation tomatrix A. Then Pk can be used as a preconditioner for linear
system (1). We refer to such a preconditioner Pk as a polynomial preconditioner for A. The preconditionedmatrix is given by

P−1
k A = (I + Ω + Ω2

+ · · · + Ωk−1)M−1A = I − Ωk. (2)

In preconditioned Krylov subspace methods, the main computational cost is to solve the generalized residual equation
Pkz = r when Pk is applied as a preconditioner. It follows from (2) that z = (I + Ω + Ω2

+ · · · + Ωk−1)M−1r . To ob-
tain the vector z , we perform a k-step iteration as follows:

Mz(j)
= Nz(j−1)

+ r, j = 1, 2, . . . , k. (3)

Thus,

z(m)
= Ωkz(0)

+ (I + Ω + Ω2
+ · · · + Ωk−1)M−1r. (4)

If we choose z(0)
= 0 in (4), then z(m)

=

I + Ω + Ω2

+ · · · + Ωk−1

M−1r = z . A polynomial preconditioner is also

called a k-step polynomial preconditioner, and it can also be derived from the two-stage iteration methods of trivial outer
splittings, refer to [19] for this discussion. Based on the foregoing analysis, the effectiveness of a polynomial preconditioner
depends upon a good splitting of matrix A, so that the iteration procedure (3) can be implemented efficiently. The k-step
multisplitting preconditioners are commonly applied to parallel and vector machines to solve a parallel linear system [17,
18]. In this paper, by utilizing the efficient CSCS iteration method introduced in [20], we propose a CSCS-based polynomial
preconditioner for GMRES method to solve the Toeplitz systems arising in numerical solutions of FDEs.

In Section 2, the CSCS iterationmethod is briefly reviewed. In Section 3, the polynomial preconditioner based on the CSCS
iterationmethod is established and the spectrum of preconditionedmatrix is theoretically analyzed. In Section 4, numerical
experiments involving the numerical solutions of FDEs are reported to show the effectiveness of the proposed method.
Finally, the paper closes with conclusions in Section 5.

2. The CSCS iteration method

Recently, Ng designed in [20] a circulant and skew-circulant splitting (CSCS) iteration method, which is very efficient
for solving the non-Hermitian Toeplitz systems. Based on the fact that the Toeplitz matrix A in (1) naturally possesses
circulant/skew-circulant splitting A = C + S, where

C =
1
2


a0 a−1 + an−1 · · · a2−n + a2 a1−n + a1

a1 + a1−n a0 · · · · · · a2−n + a2
...

. . .
. . .

. . .
...

an−2 + a2 · · · · · · a0 a−1 + an−1
an−1 + a−1 an−2 + a−2 · · · a1 + a1−n a0

 (5)

and

S =
1
2


a0 a−1 − an−1 · · · a2−n − a2 a1−n − a1

a1 − a1−n a0 · · · · · · a2−n − a2
...

. . .
. . .

. . .
...

an−2 − a2 · · · · · · a0 a−1 − an−1
an−1 − a−1 an−2 − a−2 · · · a1 − a1−n a0

 . (6)

Note that C is a circulant matrix and S is a skew-circulant matrix. A circulant matrix can be diagonalized by the discrete
Fourier matrix F and a skew-circulant matrix can also be diagonalized via a discrete Fourier matrix with diagonal scaling,
i.e., F̂ = FΩ . That is to say, it holds that C = F∗ΛCF and S = F̂∗ΛS F̂ , where F = (F)j,k =

1
√
n e

2πι
n (j−1)(k−1), Ω = diag(1, e−

πι
n ,

. . . , e
−(n−1)πι

n ), 1 ≤ j, k ≤ n and ι is the imaginary unit [3, pp. 37–39]. ΛC and ΛS are diagonal matrices formed by the
eigenvalues of C and S, respectively, which can be obtained in O(n log n) operations by using the FFTs. Furthermore, the
CSCS iteration method can be algorithmically described as follows:

Let u(0)
∈ Cn be an arbitrary initial guess. For j = 0, 1, 2, . . . until the sequence of iterates {u(j)

}
∞

j=0 ⊂ Cn converges,
compute the next iterate u(j+1) according to the following procedure:

(αI + C)u(j+ 1
2 )

= (αI − S)u(j)
+ f ,

(αI + S)u(j+1)
= (αI − C)u(j+ 1

2 )
+ f ,

where α is a given positive constant and I represents the identity matrix.
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