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a b s t r a c t

We consider the coupled system −x′′
= λ1f (t, y(t)), −y′′

= λ2g(t, x(t)), t ∈ (0, 1),
subject to the coupled boundary conditions x(0) = H1 (ϕ1(y)), x(1) = 0 and y(0) =

H2 (ϕ2(x)), y(1) = 0. Since H1 and H2 are nonlinear functions and ϕ1 and ϕ2 are linear
functionals realized as Stieltjes integrals, the boundary conditions may be nonlocal and
nonlinear in character. By assuming that ϕ1 and ϕ2 satisfy a particular decomposition
hypothesis together with some growth assumptions on H1 and H2 at 0 and +∞, we show
that this system can possess at least one positive solution even if no growth conditions are
imposed on f and g .

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the existence of at least one positive solution to the following coupled system of nonlocal
boundary value problems (BVPs) with parameters λ1, λ2 > 0.

−x′′
= λ1f (t, y(t)), t ∈ (0, 1) subject to x(0) = H1 (ϕ1(y)) , x(1) = 0

−y′′
= λ2g(t, x(t)), t ∈ (0, 1) subject to y(0) = H2 (ϕ2(x)) , y(1) = 0. (1.1)

In (1.1) the functions H1, H2 : R → R are nonlinear functions, whereas the functionals ϕ1, ϕ2 : C([0, 1]) → R are linear
and can be realized as Stieltjes integrals with signed measures. This latter fact allows us to consider nonlocal terms that are
possibly negative even when x or y is nonnegative. Our main result demonstrates that (1.1) can possess at least one positive
solution provided that ϕ1 and ϕ2 satisfy an appropriate collection of relatively mild hypotheses together with the functions
H1 and H2 possessing superlinear growth at both 0 and +∞. Of note is that we impose no growth conditions on f and g at
all. This only works due to the decomposition technique, which we shall briefly describe next.

Roughly speaking, the key fact that we utilize, and which we introduced in [1] and has been further developed
subsequently in [2–9], is that if one wishes to consider the nonlinear, nonlocal term H1 (ϕ1(y)) appearing in (1.1) and if
one also wishes to impose only asymptotic growth conditions on H1, then a problem occurs since a priori it is unclear what
growth condition (especially from below) ϕ1(y) should satisfy. For instance, if we put

ϕ1(y) :=
1
2
y

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
−

1
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y

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
, (1.2)

then for each M > 0, there is y ∈ C([0, 1]) such that ϕ1(y) = 0 and ∥y∥ ≥ M . This presents a problem insofar as
utilizing a condition such as, for instance, limz→+∞

H1(z)
z = +∞. To circumvent this problem, we have noticed that when

E-mail address: cgood@prep.creighton.edu.

http://dx.doi.org/10.1016/j.aml.2014.10.010
0893-9659/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.aml.2014.10.010
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2014.10.010&domain=pdf
mailto:cgood@prep.creighton.edu
http://dx.doi.org/10.1016/j.aml.2014.10.010


18 C.S. Goodrich / Applied Mathematics Letters 41 (2015) 17–22

operating within a particular positive cone – see Section 2 in the sequel – functional (1.2) may instead be written in the
form ϕ1(y) = ϕ1,1(y) + ϕ1,2(y), where ϕ1,1 essentially traps the negativity of ϕ1, whereas ϕ1,2 satisfies an appropriate
coercivity-like condition of the form ϕ1,2(y) ≥ C0∥y∥ for some constant C0 > 0. This then produces the control we need—
see Example 2.4 for a concrete illustration of this decomposition.

Finally, to contextualize our result we mention some of the relevant literature. Coupled systems of the sort exemplified
by (1.1) equipped with a variety of boundary conditions have been treated by many authors—see the interesting recent
paper by Henderson and Luca [10] and the references therein. Furthermore, we note that there has been much research
on nonlocal boundary value problems in the past several years. Above and beyond the intrinsic mathematical interest in
such problems, they can also be used as models for steady-state heat flow and beam deformation—see, for example, the
discussion in [11,12]. In any case, the important work of Infante andWebb [13,14] has provided a very general and effective
framework in which to study these sorts of problems. Slightly earlier investigations of Karakostas and Tsamatos [15,16]
and of Yang [17,18] also address nonlocal and, in the case of Yang’s papers, nonlinear boundary conditions with Stieltjes
integral representations. Goodrich [19] then examined the case where nonlinear boundary conditions were asymptotically
related to linear functionals. More recently, many investigations by Infante, et al. [11,20–23,12] have addressed nonlocal
and possibly nonlinear boundary conditions in a variety of settings such as coupled systems, second- and third-order
problems, eigenvalue problems, and existence of multiple positive solutions, as well as the connection of these problems to
more general Hammerstein integral equations. A recent paper of Anderson [24] addresses a first-order BVP with nonlocal,
nonlinear boundary conditions. Another very recent paper of Karakostas [25] presents an interesting analysis of a broad class
of nonlocal boundary value problems, also potentially with nonlinear boundary conditions, and provides several interesting
applications. Finally, for the reader interested in the early historical development of nonlocal boundary value problem
theory, classical works by Picone [26] and Whyburn [27] may be consulted for their historical value.

However, in all of the previously mentioned investigations there is always some growth imposed on the equivalent of
our nonlinearities f and g in (1.1). Consequently, our results demonstrate in the specific context of problem (1.1) that the
decomposition technique can be utilized to transfer all growth from f and g to H1 and H2 instead. Moreover, we note that
due to the coupled nature of the nonlocal, nonlinear boundary conditions, the ‘‘unraveling’’ of these layers of composition
requires a degree of care that is not present in the uncoupled case—cf. [10].

2. Main result and discussion

We begin by stating certain of the hypotheses we impose on problem (1.1) as well as the technical preliminaries we
require. To this end, we remark that in the sequel the map (t, s) → G(t, s) defined on the unit square will denote the
Green’s function for the operator Ly = −y′′ equipped with Dirichlet boundary conditions. Given a fixed proper subinterval
[a, b] of (0, 1), the number γ := mint∈[a,b]{t, 1 − t} = min{a, 1 − b} ∈ (0, 1) satisfies the well-known property
mint∈[a,b] G(t, s) ≥ γG(s, s) = γ maxt∈[0,1] G(t, s), for each s ∈ [0, 1].

As mentioned in Section 1 and as stated momentarily, we assume that ϕ1 and ϕ2 satisfy the decompositions ϕ1(y) =

ϕ1,1(y) + ϕ1,2(y) and ϕ2(y) = ϕ2,1(y) + ϕ2,2(y) for each y ∈ C([0, 1]). With this in mind and equipping C([0, 1]) with the
usual maximum norm, ∥ · ∥, we operate within the cone

K :=


y ∈ C([0, 1]) : y(t) ≥ 0, min

t∈[a,b]
y(t) ≥ γ ∥y∥, ϕ1,1(y) ≥ 0, ϕ2,1(y) ≥ 0


,

which is a slight modification of the cone introduced by Infante and Webb [13]. Since ϕ1,2 and ϕ2,2 will be nonnegative on
K by virtue of the coercivity-like assumption in (A0) below, we do not need to include this in K . Finally, the assumptions
wemake are as follows; note that (A0)–(A2) ensure that the functionals have the proper structure, whereas (A3) is a growth
condition imposed on H1 and H2. No conditions, other than the continuity and nonnegativity hypotheses of condition (A4),
are imposed on either f or g .
(A0) Assume that there are four linear functionals ϕ1,1, ϕ1,2, ϕ2,1, ϕ2,2 : C([0, 1]) → R such that ϕ1(y) = ϕ1,1(y)+ϕ1,2(y)

and ϕ2(y) = ϕ2,1(y) + ϕ2,2(y). Moreover, assume that there exist constants C0, D0 > 0 such that ϕ1,2(y) ≥ C0∥y∥ and
ϕ2,2(y) ≥ D0∥y∥ for each y ∈ K . (Note that since both ϕ1 and ϕ2 are linear, there exist constants C1 and D1 such that
|ϕ1(y)| ≤ C1∥y∥ and |ϕ2(y)| ≤ D1∥y∥, for each y ∈ C([0, 1]). Henceforth, C1 and D1 shall denote these constants.)

(A1) The functionals described in condition (A0) have the form

ϕ1(y) :=


[0,1]

y(t) dα1(t), ϕ1,1(y) :=


[0,1]

y(t) dα1,1(t), ϕ1,2(y) :=


[0,1]

y(t) dα1,2(t),

ϕ2(x) :=


[0,1]

x(t) dα2(t), ϕ2,1(x) :=


[0,1]

x(t) dα2,1(t), ϕ2,2(x) :=


[0,1]

x(t) dα2,2(t),

where each of αi, αi,j : [0, 1] → R, i, j = 1, 2, is of bounded variation on [0, 1].
(A2) It holds that

[0,1]
G(t, s) dα1,1(t),


[0,1]

G(t, s) dα2,1(t),


[0,1]
(1 − t) dα1,1(t),


[0,1]

(1 − t) dα2,1(t) > 0,

where each of the first two inequalities holds for every s ∈ [0, 1].
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