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1. Introduction

In this article, we are interested in the existence of positive solutions for the nonlocal problem with dependence on the
gradient

-M (x/ |Vu|”dx> Apu = f(x, u, [VulP2Vu) in £2,
2
u=0 onds,

(1.1)

where £2 is a bounded smooth domain of RV, N > 3,1 < p < N,M : 2 x R — R is a continuous function satisfying.
(M1) There exist positive constants mg, M, such that

mo < M(x,t) < My, VY t)e 2 xR;
(M2) There exist positive constants Ry and L; such that

IM(x, ) = M(x, )| <Li|lti — 6|P7", Vxe £ and |t], |tz] <R;.

Eq. (1.1) is called a nonlocal problem because of the term M (x, fg [Vul? dx), which implies that it is no longer a pointwise
identity. This causes some mathematical difficulties which make the study of such a problem particularly interesting. In
recent years, nonlocal problems have been studied in many papers, we refer to some interesting papers [ 1-6]. In this paper,
motivated by the ideas introduced by D.G. de Figueiredo et al. [7] and developed by F.J.S.A. Corréa and G.M. Figueiredo
[5,8] we study the existence of positive solutions for problem (1.1). The novelty of this work lies in the fact that f depends
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on the gradient of the solutions. Moreover, it should be noticed that the function M depends on x. This leads (1.1) to a nonlocal
and nonvariational problem. In order to overcome the difficulties brought, the technique used here consists of associating
with problem (1.1) a family of quasilinear elliptic problems with no dependence on the gradient of the solutions, which is
variational, and an iterative scheme.

In order to state the main result we assume that f : 2 x R x RY — R is continuous satisfying the following hypotheses:

(FO) f(x,t,|EP72) = Oforallt <Oandallx € 2,£ € RV;

(F1) lim; % =0forallx € 2 and £ € RV;

(F2) There exists g € (p, p*), p* = N”—fp such that
im J& 6 |£|P2&)
im > °7

=0 forallx € 2and& e RY;
t—+00 |t|q—1

(F3) There exists i > p such that
t
0<M@mEW%r:u/fWa@W%MwﬁWL@W%ﬁ
0

forallt > 0,x € 2 and & € RV;
(F4) There exist positive constants Aq, A, such that

F(x, t, |E|P728) > At — A, forallt >0, xe 2, £ e RY;

-2 R
(F5) The function t W is increasing in (0, 4+-00) for all x € £2 and all £ € RV;
(F6) There exist positive constants Ry, Ly, L3 such that

If(x, tr, |EIP2E) — f(x, ty, |EPT2E)| < Lylt; — 6P7Y, Vxe 2, |E] <Ry, |t 2] <R,

and
If (x, £, [E11P2E1) — F(x, £, |6 P 26| < Lsl&1 — &P, x € 2, |&], |&] <Ry, |t] < Rs.

Remark 1.1. By (F1) and (F2), given any € > 0, there exists ¢, > 0 such that
If(x, t, [EIP72E)] < eltP +cct]!, Vi(x,t,6) € 2 x R x R". (1.2)
Hence, if there exists a constant K; > 0 such that |t| < K then there exists a constant C > 0 depending on K, such that

p—1

(fvmnmw%w3M)psa Ve e BN, (1.3)
2

Our main result establishes the existence of solutions for problem (1.1) involving the positive number C,, which appears
in the following inequalities in RV

X2 — P2y, x —y) = Glx —yIP ifp > :
(XIP~2x = lyI"~2 ) = Gl [Pifp>2 (1.4)
or

_ _ Golx — yI?
(xPP2x — |y 2y, x —y) > —2

where (., .) is the inner product usual in RV,
1
Let Wol’p(.Q) be the Sobolev space with respect to the norm |ju| = (fQ |VulP dx) P We denote by S, the best constant in
1
the embedding W(}‘p(.Q) into the space L"(§2) whose norm is defined by |u|, = (fQ [u|" dx) .

Theorem 1.2. Assume that the conditions (M1)-(M2) and (F0)-(F6) hold. Moreover, if C, > ﬁ and
0°p

1

moLs +L,C \ 71

S, (2“;,71> <1 (1.6)
mOCpSp — mgplL,

then problem (1.1) has a positive solution.
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