Nonoscillatory solutions of higher order differential and delay differential equations with forcing term

T. Candan*
Department of Mathematics, Faculty of Arts and Sciences, Niğde University, Niğde 51200, Turkey

A R TICLE INFO

Article history:

Received 4 July 2014
Received in revised form 16 August 2014
Accepted 16 August 2014
Available online 28 August 2014

Abstract

In this article, we study the existence of nonoscillatory solutions of higher order differential and delay differential equations with forcing term. Some new sufficient conditions are given. We use the Schauder's fixed point theorem to prove our results.

© 2014 Elsevier Ltd. All rights reserved.

Keywords:

Fixed point
Higher-order
Nonoscillatory solution

1. Introduction

The purpose of this article is to study higher-order differential and delay differential equations with forcing term of the form

$$
\begin{align*}
& {\left[r(t) x^{(n)}(t)\right]^{(m)}+f(t, x(t))=g(t)} \tag{1}\\
& {\left[r(t) x^{(n)}(t)\right]^{(m)}+f(t, x(t-\tau))=g(t)} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\left[r(t) x^{(n)}(t)\right]^{(m)}+\int_{a}^{b} f(t, x(t-\xi)) d \xi=g(t) \tag{3}
\end{equation*}
$$

where $m \geqslant 1$ and $n \geqslant 2$ are integers, $f \in C\left(\left[t_{0}, \infty\right) \times \mathbb{R}, \mathbb{R}\right), f(t, x)$ is non-decreasing or non-increasing function in x for each $t, x f(t, x)>0, x \neq 0, \tau \geqslant 0, r \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right), g \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ and $b>a \geqslant 0$. Here we give sufficient conditions for the existence of nonoscillatory solutions of (1)-(3).

The nonoscillatory behavior of solutions of differential and delay differential equations of the form (1)-(3) has been considered by different authors in the past. This work was motivated by the papers of Kusano and Naito [1,2] which are concerned with the existence of oscillatory and nonoscillatory solutions of fourth-order differential equation of the form

$$
\left[r(t) y^{\prime \prime}(t)\right]^{\prime \prime}+y F\left(y^{2}, t\right)=0
$$

and Li and Fei [3] which is concerned with the existence of positive solutions of higher-order nonlinear delay differential equations of the form

$$
\left(r(t) x^{(m-1)}(t)\right)^{\prime}+f(t, x(t-\tau))=0
$$

[^0]The existence of solutions of the differential equations and neutral differential equations also were investigated in [4] and [5,6], respectively. For related books, we refer the reader to [7-11].

By a solution of (1) we mean a function $x \in C([T, \infty), \mathbb{R})$, for some $T \geqslant t_{0}, x(t)$ is n times continuously differentiable and $r(t) x^{(n)}(t)$ is m times continuously differentiable on $[T, \infty)$ and such that (1) is satisfied for $t \geqslant T$. By a solution of (2) we mean a function $x \in C\left(\left[t_{1}-\tau, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geqslant t_{0}, x(t)$ is n times continuously differentiable and $r(t) x^{(n)}(t)$ is m times continuously differentiable on $\left[t_{1}, \infty\right)$ and such that (2) is satisfied for $t \geqslant t_{1}$. By a solution of (3) we mean a function $x \in C\left(\left[t_{1}-b, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geqslant t_{0}, x(t)$ is n times continuously differentiable and $r(t) x^{(n)}(t)$ is m times continuously differentiable on $\left[t_{1}, \infty\right)$ and such that (3) is satisfied for $t \geqslant t_{1}$.

2. Main results

Theorem 1. Assume that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \int_{s}^{\infty} \frac{s^{n-1} u^{m-1}}{r(s)}|f(u, c)| d u d s<\infty \quad \text { for some } c \neq 0 \quad \text { and } \quad \int_{t_{0}}^{\infty} \int_{s}^{\infty} \frac{s^{n-1} u^{m-1}}{r(s)}|g(u)| d u d s<\infty \tag{4}
\end{equation*}
$$

Then (1) has a bounded nonoscillatory solution.
Proof. Suppose (4) holds with $c>0$, the case $c<0$ can be treated similarly. Thus, one can choose a $t_{1} \geqslant t_{0}$ sufficiently large such that

$$
\begin{equation*}
\frac{1}{(n-1)!(m-1)!} \int_{t}^{\infty} \int_{s}^{\infty} \frac{s^{n-1} u^{m-1}}{r(s)}[f(u, c)+|g(u)|] d u d s \leqslant \alpha-M_{1}, \quad t \geqslant t_{1} \tag{5}
\end{equation*}
$$

where c is M_{2} if $f(t, x)$ is non-decreasing in x for each t and c is M_{1} if $f(t, x)$ is non-increasing in x for each t, M_{1} and M_{2} are defined in the following. Let Λ be the set of all continuous and bounded functions on $\left[t_{1}, \infty\right)$ with the sup norm. We define a closed, bounded and convex subset A of Λ as follows:

$$
A=\left\{x \in \Lambda: M_{1} \leqslant x(t) \leqslant M_{2}, \quad t \geqslant t_{1}\right\},
$$

where M_{1} and M_{2} are positive constants such that

$$
M_{1}<\alpha<2 \alpha<M_{1}+M_{2} .
$$

Consider the operator $S: A \longrightarrow \Lambda$ defined by

$$
(S x)(t)=\alpha-\frac{(-1)^{m+n}}{(n-1)!(m-1)!} \int_{t}^{\infty} \int_{s}^{\infty} \frac{(s-t)^{n-1}(u-s)^{m-1}}{r(s)}[f(u, x(u))-g(u)] d u d s, \quad t \geqslant t_{1}
$$

Our goal is to show that S satisfies the assumptions of Schauder's fixed point theorem.
(i) S maps A into A. For $t \geqslant t_{1}$ and $x \in A$, using (5) we have

$$
\begin{aligned}
(S x)(t) & \leqslant \alpha+\frac{1}{(n-1)!(m-1)!} \int_{t}^{\infty} \int_{s}^{\infty} \frac{(s-t)^{n-1}(u-s)^{m-1}}{r(s)}[f(u, c)+|g(u)|] d u d s \\
& \leqslant \alpha+\frac{1}{(n-1)!(m-1)!} \int_{t}^{\infty} \int_{s}^{\infty} \frac{s^{n-1} u^{m-1}}{r(s)}[f(u, c)+|g(u)|] d u d s \leqslant M_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
(S x)(t) & \geqslant \alpha-\frac{1}{(n-1)!(m-1)!} \int_{t}^{\infty} \int_{s}^{\infty} \frac{(s-t)^{n-1}(u-s)^{m-1}}{r(s)}[f(u, c)+|g(u)|] d u d s \\
& \geqslant \alpha-\frac{1}{(n-1)!(m-1)!} \int_{t}^{\infty} \int_{s}^{\infty} \frac{s^{n-1} u^{m-1}}{r(s)}[f(u, c)+|g(u)|] d u d s \geqslant M_{1}
\end{aligned}
$$

Hence, S maps A into A.
(ii) S is continuous. Let $\left\{x_{k}\right\}$ be a convergent sequence of functions in A such that $x_{k}(t) \rightarrow x(t)$ as $k \rightarrow \infty$. Since A is closed, $x \in A$. For $t \geqslant t_{1}$,

$$
\begin{aligned}
\left|\left(S x_{k}\right)(t)-(S x)(t)\right| & \leqslant \frac{1}{(n-1)!(m-1)!} \int_{t}^{\infty} \int_{s}^{\infty} \frac{(s-t)^{n-1}(u-s)^{m-1}}{r(s)}\left|f\left(u, x_{k}(u)\right)-f(u, x(u))\right| \text { duds } \\
& \leqslant \frac{1}{(n-1)!(m-1)!} \int_{t}^{\infty} \int_{s}^{\infty} \frac{s^{n-1} u^{m-1}}{r(s)}\left|f\left(u, x_{k}(u)\right)-f(u, x(u))\right| \text { duds. }
\end{aligned}
$$

Since $\left|f\left(t, x_{k}(t)\right)-f(t, x(t))\right| \rightarrow 0$ as $k \rightarrow \infty$ by making use of the Lebesgue dominated convergence theorem, we see that

$$
\lim _{k \rightarrow \infty}\left\|\left(S x_{k}\right)(t)-(S x)(t)\right\|=0
$$

This means that S is continuous.

https://daneshyari.com/en/article/1707837

Download Persian Version:
https://daneshyari.com/article/1707837

Daneshyari.com

[^0]: * Tel.: +90 3882254203.

 E-mail address: tcandan@nigde.edu.tr.

