An existence result for a class of quasilinear singular competitive elliptic systems

Dumitru Motreanu ${ }^{\text {a,* }}$, Abdelkrim Moussaoui ${ }^{\text {b }}$
a Département de Mathématiques, Université de Perpignan, 66860 Perpignan, France
${ }^{\text {b }}$ Biology Department, A. Mira Bejaia University, Targa Ouzemour 06000 Bejaia, Algeria

ARTICLE INFO

Article history:

Received 29 May 2014
Accepted 25 June 2014
Available online 5 July 2014

Keywords:

Singular system
p-Laplacian
Schauder's fixed point theorem
Regularity

Abstract

In this paper we establish existence and regularity of positive solutions for a singular quasilinear elliptic system with competitive structure. The approach is based on comparison properties, a priori estimates and the Schauder's fixed point theorem.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper we focus on the system of quasilinear elliptic equations

$$
\begin{cases}-\Delta_{p} u=f_{1}(u, v) & \text { in } \Omega \tag{1.1}\\ -\Delta_{q} v=f_{2}(u, v) & \text { in } \Omega \\ u, v>0 \text { in } \Omega & \\ u, v=0 \text { on } \partial \Omega\end{cases}
$$

on a bounded domain $\Omega \subset \mathbb{R}^{N}$ with a $C^{1, \alpha}$ boundary $\partial \Omega, \alpha \in(0,1)$, which exhibits a singularity at zero. Here Δ_{p} (resp. Δ_{q}) stands for the p-Laplacian (resp. q-Laplacian) differential operator on $W_{0}^{1, p}(\Omega)$ (resp. $W_{0}^{1, q}(\Omega)$) with $1<p, q \leq N$. Related to system (1.1), we assume that $f_{i}:(0,+\infty) \times(0,+\infty) \rightarrow(0,+\infty), i=1,2$, are continuous functions satisfying the growth conditions:

$$
\begin{align*}
& \left\{\begin{array}{l}
m_{1} s_{1}^{\alpha_{1}} s_{2}^{\beta_{1}} \leq f_{1}\left(s_{1}, s_{2}\right) \leq M_{1} s_{1}^{\alpha_{1}} s_{2}^{\beta_{1}} \text { for all } s_{1}, s_{2}>0, \text { with } M_{1}, m_{1}>0 \\
\text { and } \alpha_{1} \in \mathbb{R}, \beta_{1}<0 \text { such that }\left|\alpha_{1}\right|-\beta_{1}<\min (1, p-1),
\end{array}\right. \tag{1.2}\\
& \left\{\begin{array}{l}
m_{2} s_{1}^{\alpha_{2}} s_{2}^{\beta_{2}} \leq f_{2}\left(s_{1}, s_{2}\right) \leq M_{2} s_{1}^{\alpha_{2}} s_{2}^{\beta_{2}} \text { for all } s_{1}, s_{2}>0, \text { with } M_{2}, m_{2}>0 \\
\text { and } \beta_{2} \in \mathbb{R}, \alpha_{2}<0 \text { such that }\left|\beta_{2}\right|-\alpha_{2}<\min (1, q-1) .
\end{array}\right.
\end{align*}
$$

A basic feature of our setting is that the singularity in problem (1.1) comes out through a competitive structure of the nonlinearities $f_{1}(u, v)$ and $f_{2}(u, v)$. It is caused by the fact that β_{1} and α_{2} are negative (see (1.2) and (1.3)), which prevents f_{1} and f_{2} to be increasing with respect to v and u, respectively. Due to this, the sub-supersolution method is not directly

[^0]applicable to system (1.1) without additional assumptions. We refer to [1] for an approach within the method of subsupersolutions. Another existence result obtained under different hypotheses and by means of adequate truncations can be found in [2]. We also mention that the semilinear case in (1.1) (i.e. $p=q=2$) was treated in [3,4] by essentially using the linearity of the principal part. It is worth pointing out that the complementary situation for system (1.1) with respect to our setting is the so-called cooperative structure, that is assuming to have positive numbers β_{1} and α_{2} in (1.2) and (1.3). This case has attracted much interest (see [5,6,1,7]).

Our goal is to establish the existence and regularity of (positive) solutions for problem (1.1). To this end we develop some comparison arguments, which allow us to get an auxiliary result that provides a priori estimates. In turn, these estimates enable us to obtain our main result by applying the Schauder's fixed point theorem to a fixed point problem associated to system (1.1). The rest of the paper is organized as follows. Section 2 contains the needed comparison properties. Section 3 presents our existence and regularity result.

2. Auxiliary result

Given $1<p<+\infty$, the spaces $L^{p}(\Omega)$ and $W_{0}^{1, p}(\Omega)$ are endowed with the usual norms $\|u\|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}$ and $\|u\|_{1, p}=\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{1 / p}$, respectively. In the sequel, corresponding to $1<p<+\infty$, we denote $p^{\prime}=\frac{p-1}{p}$. We will also utilize the spaces $C(\bar{\Omega})$ and $C_{0}^{1, \beta}(\bar{\Omega})=\left\{u \in C^{1, \beta}(\bar{\Omega}): u=0\right.$ on $\left.\partial \Omega\right\}$ with $\beta \in(0,1)$. We recall that $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ for all $u \in W_{0}^{1, p}(\Omega)$. For later use, we denote by $\lambda_{1, p}$ and $\lambda_{1, q}$ the first eigenvalue of $-\Delta_{p}$ on $W_{0}^{1, p}(\Omega)$ and of $-\Delta_{q}$ on $W_{0}^{1, q}(\Omega)$, respectively. Let $\phi_{1, p}$ be the normalized positive eigenfunction of $-\Delta_{p}$ corresponding to $\lambda_{1, p}$, that is $-\Delta_{p} \phi_{1, p}=\lambda_{1, p} \phi_{1, p}^{p-1}$ in $\Omega, \phi_{1, p}=0$ on $\partial \Omega$, with $\left\|\phi_{1, p}\right\|_{p}=1$. Similarly, let $\phi_{1, q}$ be the normalized positive eigenfunction of $-\Delta_{q}$ corresponding to $\lambda_{1, q}$, that is $-\Delta_{q} \phi_{1, q}=\lambda_{1, q} \phi_{1, q}^{q-1}$ in $\Omega, \phi_{1, q}=0$ on $\partial \Omega$, with $\left\|\phi_{1, q}\right\|_{q}=1$. The strong maximum principle ensures the existence of positive constants l_{1} and l_{2} such that

$$
\begin{equation*}
l_{1} \phi_{1, p}(x) \leq \phi_{1, q}(x) \leq l_{2} \phi_{1, p}(x) \quad \text { for all } x \in \Omega \tag{2.1}
\end{equation*}
$$

In what follows, we introduce some functions which are useful to get comparison results and a priori estimates for solutions of problem (1.1). Let w_{1} and w_{2} be the unique weak solutions of the problems

$$
\left\{\begin{array} { l l }
{ - \Delta _ { p } w _ { 1 } = w _ { 1 } ^ { \beta _ { 1 } } } & { \text { in } \Omega } \tag{2.2}\\
{ w _ { 1 } > 0 } & { \text { in } \Omega } \\
{ w _ { 1 } = 0 } & { \text { on } \partial \Omega }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
-\Delta_{q} w_{2}=w_{2}^{\alpha_{2}} & \text { in } \Omega \\
w_{2}>0 & \text { in } \Omega \\
w_{2}=0 & \text { on } \partial \Omega
\end{array}\right.\right.
$$

respectively, which are known to satisfy

$$
\begin{equation*}
c_{0} \phi_{1, p}(x) \leq w_{1}(x) \leq c_{1} \phi_{1, p}(x) \quad \text { and } \quad c_{0}^{\prime} \phi_{1, q}(x) \leq w_{2}(x) \leq c_{1}^{\prime} \phi_{1, q}(x) \tag{2.3}
\end{equation*}
$$

with positive constants $c_{0}, c_{1}, c_{0}^{\prime}$, c_{1}^{\prime} (see [8]). Consider now the functions z_{1} and z_{2} defined by

$$
-\Delta_{p} z_{1}=\left\{\begin{array}{ll}
w_{1}^{\beta_{1}} & \text { in } \Omega \backslash \bar{\Omega}_{\delta} \tag{2.4}\\
-w_{1}^{\beta_{1}} & \text { in } \Omega_{\delta}
\end{array} \quad z_{1}=0 \text { on } \partial \Omega\right.
$$

and

$$
-\Delta_{q} z_{2}=\left\{\begin{array}{ll}
w_{2}^{\alpha_{2}} & \text { in } \Omega \backslash \bar{\Omega}_{\delta} \tag{2.5}\\
-w_{2}^{\alpha_{2}} & \text { in } \Omega_{\delta},
\end{array} \quad z_{2}=0 \text { on } \partial \Omega\right.
$$

where

$$
\Omega_{\delta}=\{x \in \Omega: d(x, \partial \Omega)<\delta\}
$$

with a fixed $\delta>0$ sufficiently small. On the basis of (2.3), the Hardy-Sobolev inequality (see, e.g., [9, Lemma 2.3]) guarantees that the right-hand side of (2.4) and (2.5) belongs to $W^{-1, p^{\prime}}(\Omega)$ and $W^{-1, q^{\prime}}(\Omega)$, respectively. Consequently, the Minty-Browder theorem (see [10, Theorem V.15]) implies the existence and uniqueness of z_{1} and z_{2} in (2.4) and (2.5). Moreover, (2.2), (2.3), (2.4), (2.5), the monotonicity of the operators $-\Delta_{p}$ and $-\Delta_{q}$, and [11, Corollary 3.1] yield

$$
\begin{equation*}
\frac{c_{0}}{2} \phi_{1, p}(x) \leq z_{1}(x) \leq c_{1} \phi_{1, p}(x) \quad \text { and } \quad \frac{c_{0}^{\prime}}{2} \phi_{1, q}(x) \leq z_{2}(x) \leq c_{1}^{\prime} \phi_{1, q}(x) \quad \text { in } \Omega, \tag{2.6}
\end{equation*}
$$

for a possibly smaller $\delta>0$. For later use we denote

$$
R=\max \left\{\max _{\bar{\Omega}} \phi_{1, p}(x), \max _{\bar{\Omega}} \phi_{1, q}(x)\right\},
$$

and fix a constant $\mu=\mu(\delta)>0$ such that

$$
\phi_{1, p}(x), \phi_{1, q}(x) \geq \mu \quad \text { in } \Omega \backslash \Omega_{\delta}
$$

https://daneshyari.com/en/article/1707864

Download Persian Version:
https://daneshyari.com/article/1707864

Daneshyari.com

[^0]: * Corresponding author. Tel.: +33 0678965094.

 E-mail addresses: motreanu@univ-perp.fr (D. Motreanu), abdelkrim.moussaoui@univ-bejaia.dz (A. Moussaoui).

