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a b s t r a c t

At a border-collision bifurcation a fixed point of a piecewise-smooth map intersects a sur-
facewhere the functional form of themap changes. Near a generic border-collision bifurca-
tion there are two fixed points, each of which exists on one side of the bifurcation. A simple
eigenvalue condition indicates whether the fixed points exist on different sides of the bi-
furcation (this case can be interpreted as the persistence of a single fixed point), or on the
same side of the bifurcation (in which case the bifurcation is akin to a saddle–node bifur-
cation). A similar eigenvalue condition indicates whether or not there exists a period-two
solution on one side of the bifurcation. Previously these conditions have been combined to
obtain five distinct scenarios for the existence and relative coexistence of fixed points and
period-two solutions near border-collision bifurcations. In this Letter it is shown that one
of these scenarios, namely that two fixed points exist on one side of the bifurcation and a
period-two solution exists on the other side of the bifurcation, cannot occur. The remain-
ing four scenarios are feasible. Therefore there are exactly four distinct scenarios for fixed
points and period-two solutions near border-collision bifurcations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A piecewise-smooth map on M ⊂ RN is a discrete-time dynamical system

Xi+1 = F j(Xi), Xi ∈ Mj, (1.1)

where the regions Mj form a partition of the domain M, and each F j
: Mj → M is a smooth function. The boundaries of the

Mj, termed switching manifolds, are assumed to be either smooth or piecewise-smooth surfaces. Piecewise-smooth maps
are used to model oscillatory dynamics in systems involving abrupt events, such as mechanical systems with impacts [1],
power electronics with switching events [2], and economics systems with non-negativity conditions or optimisation [3].

As parameters are varied, a fixed point of (1.1) may collide with a switching manifold. If, near the collision, the switching
manifold is smooth, (1.1) is continuous, and the derivatives DXF j are bounded, then the intersection is known as a border-
collision bifurcation. For more general scenarios the reader is referred to [4]. Dynamics near a border-collision bifurcation of
(1.1) is well-approximated by a piecewise-linear, continuous map, which can be put in the form

xi+1 =


ALxi + bµ, si ≤ 0
ARxi + bµ, si ≥ 0, (1.2)
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where, throughout this Letter, s = eT1x denotes the first component of x ∈ RN . In (1.2), AL and AR are real-valued N × N
matrices, b ∈ RN , and µ ∈ R is the primary bifurcation parameter: the border-collision bifurcation occurs at x = 0 when
µ = 0. The requirement that (1.2) is continuous implies

AR = AL + ξeT1, (1.3)

for some ξ ∈ RN .
A fixed point of (1.2) must be a fixed point of one of the two half-maps of (1.2):

f L(xi) = ALxi + bµ, f R(xi) = ARxi + bµ. (1.4)

As long as 1 is not an eigenvalue of AL and AR, f L and f R have unique fixed points,

xL = (I − AL)
−1bµ, xR = (I − AR)

−1bµ. (1.5)

The point xL is a fixed point of (1.2), and said to be admissible, if sL ≤ 0. Similarly, xR is admissible if sR ≥ 0. Since xL and xR
are linear functions of µ, generically xL and xR are each admissible for exactly one sign of µ. In general, for the purposes of
characterising the behaviour of (1.2), it suffices to consider only the sign of µ, because the structure of the dynamics of (1.2)
is independent of the magnitude of µ.

Other invariant sets may be created in border-collision bifurcations, such as periodic solutions, invariant circles, and
chaotic sets [4–9], as well as exotic dynamics such as multi-dimensional attractors [10], and infinitely many coexisting
attractors [11]. This Letter concerns only fixed points and period-two solutions. Period-two solutions were first explored
by Mark Feigin in the 1970s [12,13], and were described more recently in [4,14]. The creation of a period-two solution in
a border-collision bifurcation has different scaling properties than a period-doubling bifurcation, and such differences can
have important physical interpretations [15].

In generic situations, (1.2) either has no period-two solution for either sign ofµ, or has an LR-cycle (a period-two solution
consisting of onepoint on each side of s = 0) for exactly one sign ofµ [12]. In [13], Feigin showed that the relative coexistence
of the fixed points xL and xR is determined by a simple condition on the eigenvalues of AL and AR, and that a similar condition
indicates whether or not an LR-cycle exists for one sign of µ. This is one of the most far-reaching results in the bifurcation
theory of nonsmooth dynamical systems, because it applies tomaps of any number of dimensions. Centremanifold analysis,
which is the key tool for dimension reduction, requires local differentiability and so usually cannot be applied to bifurcations
specific to nonsmooth dynamical systems, such as border-collision bifurcations [16].

By directly combining the two generic cases for the nature of both fixed points and period-two solutions, it appears
that border-collision bifurcations can be categorised into five basic scenarios. In the absence of an LR-cycle there are two
scenarios: either xL and xR are admissible for different signs of µ, Fig. 1(A), or xL and xR are admissible for the same sign of µ,
Fig. 1(B). If there exists an LR-cycle, and xL and xR are admissible for different signs of µ, then, trivially, the LR-cycle coexists
with exactly one fixed point, Fig. 1(C). Finally, if there exists an LR-cycle, and xL and xR are admissible for the same sign of
µ, it appears that there are two scenarios. The LR-cycle could either coexist with xL and xR, as in Fig. 1(D), or coexist with
neither xL or xR. In [13], Feigin noted that the latter scenario is not possible in one-dimension (N = 1) in view of Sharkovskii’s
theorem [17]. Feigin further stated that this scenario is not possible for N = 2 (but did not provide a proof), and conjectured
that the scenario is not possible for any N ∈ Z+. The purpose of this Letter is to prove this conjecture.

Each of the four scenarios of Fig. 1 is possible for (1.2) in any number of dimensions. In Fig. 1 the scenarios are illustrated
for (1.2) with N = 1, for which (1.2) is written as

xi+1 =


aLxi + µ, xi ≤ 0
aRxi + µ, xi ≥ 0, (1.6)

where aL, aR ∈ R.
The remainder of this Letter is organised as follows. Calculations for fixed points and period-two solutions of (1.2) are

given in Section 2 and Section 3, respectively. The basic border-collision bifurcation scenarios formed by considering all
generic possibilities for fixed points and period-two solutions are described in Section 4. In Section 5 it is proved that a
non-degenerate period-two solution of (1.2) must coexist with a fixed point. Finally, Section 6 presents a brief summary
and outlook.

2. Fixed points

In order to compare the values of sL and sR (the first components of xL and xR (1.5)), we let

ϱT
= eT1adj(I − AL), (2.1)

where adj(A) denotes the adjugate of a square matrix A. Recall, if A is nonsingular, then A−1
=

adj(A)

det(A)
. Thus, by (1.5) we have

sL =
ϱTb

det(I − AL)
µ. (2.2)
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