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a b s t r a c t

The existence of solutions for a second-order periodic-integrable boundary value problem
is discussed by a variational method, and the application to the forced oscillation equation
is given.
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1. Introduction

In this paper, we discuss the second-order equation

u′′
+ f (t, u) = 0, (1.1)

with the periodic-integrable boundary value condition

u(0) = u(2π),

 2π

0
u(s)ds = 0, (1.2)

where t ∈ [0, 2π ], u ∈ R, f ∈ C([0, 2π ] × R, R).
Recently, integral boundary value problems have been studied bymany authors; see [1–6]. In theseworks, some different

methods such as lower and upper solution method, monotone iterative method and fixed point method are applied to the
problems under consideration. In particular, Hong et al. [1] studied the uniqueness of solutions for the periodic-integrable
boundary value problem (PIBVP for short) (1.1) and (1.2) by bilinear form and Schauder’s fixed point theorem.We know that
in the resonance case, that is, fu(t, u) = N2 (N ∈ Z+), PIBVP (1.1) and (1.2) may have infinitelymany solutions. For example,
if f (t, u) = N2u for (t, u) ∈ [0, 2π ] × R, then PIBVP (1.1) and (1.2) has solutions of the form u(t) = c1 cos(Nt) + c2 sin(Nt),
where c1, c2 are two arbitrary constants.

It is obvious that in [1] the conditions imposed on f (t, u) are restrict. If f (t, u) does not satisfy the conditions of [1], then
one cannot assure that PIBVP (1.1) and (1.2) has solutions. On the other hand, [7] introduced the basic theory of variational
method and discussed some specific examples. Motivated by the above-mentioned questions and the works of [7], in this
paper, we discuss the existence of solutions for PIBVP (1.1) and (1.2) by a variational method. Our results improved the one
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by [7] and supplemented the result of [1]. To be clear, we state the main theorem of [1] and the result of [7] cited by this
paper as follows:

Theorem A ([1]). Assume that (A1) and (A2) are satisfied. Then PIBVP (1.1) and (1.2) has a unique solution.
(A1) f ∈ C1([0, 2π ] × R, R);
(A2) there exist N ∈ Z+ and ϵ > 0 such that N2

+ ε ≤ fu(t, u) ≤ (N + 1)2 − ε for all (t, u) ∈ ([0, 2π ] × R).

Theorem B ([7]). Assume that e(t) ∈ C[0, T ] is a T-periodic function with
 T
0 e(t)dt = 0 and a is a constant. Then the forced

oscillation equation

u′′(t) + a sin u(t) = e(t)

has at least one T-periodic solution.

2. Existence of solutions

We shall use the following conditions:

(C1) f (t, u) ∈ C([0, 2π ] × R, R) is 2π-periodic in t for u ∈ R;
(C2) limu→∞

F(t,u)
u2

= l < 1
2 for t ∈ [0, 2π ].

It is easy to see that a 2π-periodic solution of (1.1) with zero mean value must be a solution of PIBVP (1.1) and (1.2), by
which, we shall give the existence result of PIBVP (1.1) and (1.2) by finding the minimum point of a functional.

Let H = H1
per((0, 2π), R), that is the closure of 2π-periodic functions belonging to C∞ in the space H1(0, 2π) = {u ∈

H1((0, 2π), R)|u(0) = u(2π)}. Then, a solution u ∈ H of Eq. (1.1) under the condition
 2π
0 u(s)ds = 0 is a solution of PIBVP

(1.1) and (1.2). Define the functionals by

I(u) =

 2π

0


1
2
|u′(t)|2 − F(t, u(t))


dt, (2.1)

and

N(u) =

 2π

0
u(s)ds,

where

F(t, u) =

 u

0
f (t, s)ds. (2.2)

Then under the constraint condition N(u) = 0, the minimum point u∗
∈ C2(0, 2π) ∩H of the functional I(u) is the solution

of PIBVP (1.1) and (1.2), that is, I(u∗) = minu∈H∩N−1(0) I(u). It is easy to see that the Lagrange multiplier vanishes under the
condition N(u) = 0 (see [7]), so we still consider the minimum point of the functional I(u). However, the functional I(u)
is not coercive on H , by the similar idea to [7] we pay our attention to the minimum of the functional I(u) on the weakly
closed subspace Hs := {u : u ∈ H, u =

 2π
0 u(s)ds = 0} of H . To begin with, we list some Lemmas as follows.

Lemma 2.1 (Wirtinger Inequality [7]). If u ∈ H1
per(0, T ) and ū =

1
T

 T
0 u(t)dt = 0, then T

0
|u|2dt ≤

T 2

4π2

 T

0
|u′

|
2dt.

With the help of the Lemma 2.1, on the subspace Hs, we can obtain the equivalent norm

∥u∥ =

 2π

0
|u′(t)|2dt

 1
2

.

Lemma 2.2 ([7]). Let u∗
∈ W 1,r(J, RN) be a minimum point of the functional I(u) =


J L(t, u, u

′)dt, where J = [a, b] is a finite
interval on R, 1 < r < ∞. Suppose the following two conditions are satisfied
(i)

|L(t, u, p)| + |Lu(t, u, p)| + |Lp(t, u, p)| ≤ C(1 + |p|r),

(ii) The matrix (Lpipj(t, u, p)), ∀(t, u, p) ∈ J̄ × RN
× RN is positive.

Then u∗
∈ C2 in the sense of changing the value of u∗ in a set with zero measure.
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