Hans-Goerg Roos ${ }^{\text {a }}$, Ljiljana Teofanov ${ }^{\text {b,* }}$, Zorica Uzelac ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Numerical Mathematics, Technical University of Dresden, Germany
${ }^{\mathrm{b}}$ Department for Fundamental Disciplines, Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad, Serbia

ARTICLE INFO

Article history:

Received 15 November 2013
Accepted 5 January 2014
Available online 20 January 2014

Keywords:

Singular perturbation
Boundary value problem
Layer-adapted meshes
Finite difference method
Finite element method

Abstract

We consider a few numerical methods for solving a one-dimensional convection-diffusion singularly perturbed problem. More precisely, we introduce a modified Bakvalov mesh generated using some implicitly defined functions. Properties of this mesh and convergence results for several methods on it are given. Numerical results are presented in support of the theoretical considerations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the singularly perturbed boundary value problem

$$
\begin{equation*}
-\varepsilon u^{\prime \prime}-b(x) u^{\prime}+c(x) u=f(x) \quad \text { in }(0,1), \quad u(0)=u(1)=0 \tag{1}
\end{equation*}
$$

assuming that $0<\varepsilon \ll 1, b(x)>1$ for $x \in[0,1]$ and that functions b, c, f are sufficiently smooth. Then, u can be decomposed as follows: $u=S+E$, where the smooth part S and the layer component E satisfy

$$
\left|S^{(k)}\right| \leq C, \quad\left|E^{(k)}\right| \leq C \varepsilon^{-k} e^{-x / \varepsilon} \quad k=0,1, \ldots, m(\text { for any prescribed } m)
$$

where C is a generic constant independent of ε.
For solving (1) numerically, Bakhvalov [1] defined a fine mesh in the layer region at $x=0$ by

$$
q\left(1-e^{-x_{i} /(\sigma \varepsilon)}\right)=\frac{i}{N}
$$

Away from the layer, an equidistant mesh is used with a transition point τ such that the resulting mesh generating function is from C^{1}, i.e.,

$$
\varphi(t)= \begin{cases}-\sigma \varepsilon \ln \frac{q-t}{q}:=\chi(t) & \text { for } t \in[0, \tau] \\ \text { linear } & \text { for } t \in[\tau, 1]\end{cases}
$$

τ solves a nonlinear equation. Bakhvalov type meshes use some approximations $\tilde{\tau}$ with $\chi(\tilde{\tau})=\sigma \varepsilon \ln \left(\frac{q}{\sigma \varepsilon}\right)$; see [2].

[^0]It is practically inconvenient to use different mesh generating functions in different regions. Therefore, we propose to generate a mesh using the implicitly defined function

$$
\begin{equation*}
\xi(t)-e^{-\xi(t) /(\sigma \varepsilon)}+1-2 t=0 \tag{2}
\end{equation*}
$$

and to set

$$
\begin{equation*}
x_{i}=\xi(i / N), \quad i=0,1, \ldots, N-1, \quad x_{N}=1 \tag{3}
\end{equation*}
$$

We shall study the properties of the mesh based mostly on (2). Practically, one can use the Lambert W-function to generate the mesh, because (see [3]) we have the explicit representation

$$
x_{i}=\frac{2 i}{N}-1+\varepsilon \sigma W\left(\frac{1}{\varepsilon \sigma} e^{\frac{1-\frac{2 i}{\varepsilon}}{\varepsilon \sigma}}\right)
$$

Remark that $x=-b-W\left(-a^{-b} \ln a\right) / \ln a$ solves $a^{x}=x+b$. The W-function is, e.g., in MATLAB and Mathematica available.
The parameter σ determines the grading of the mesh inside the layer. In general, we use $\sigma=l$ (or $l+1$) in combination with a discretization method of order l.

This mesh was already described in [4], but without obtaining any uniform convergence result. In contrast to that paper we present as well optimal convergence estimates for some difference methods as almost optimal error estimates for finite elements. Moreover, the authors of [4] compared the new mesh with the much simpler Shishkin mesh. This is not fair: it makes only sense to compare it with the Bakhvalov mesh.

2. Properties of the modified Bakhvalov mesh

Let us assume N to be even. The point $x_{N / 2}$ solves

$$
x_{N / 2}=e^{-x_{N / 2} /(\sigma \varepsilon)} \quad \text { or } \quad x_{N / 2}=\varepsilon \sigma W\left(\frac{1}{\sigma \varepsilon}\right)
$$

Therefore one gets (if we use the second representation we need $W(z)=\ln z+o(\ln z)$ for $z \rightarrow \infty)$

$$
x_{N / 2}=\varepsilon \sigma\left[\ln \left(\frac{1}{\varepsilon \sigma}\right)+o\left(\ln \left(\frac{1}{\varepsilon \sigma}\right)\right)\right] .
$$

Differentiation of (2) yields

$$
\xi^{\prime}=\frac{2}{1+\frac{1}{\varepsilon \sigma} e^{-\xi /(\varepsilon \sigma)}} \quad \text { and } \quad \xi^{\prime \prime}=\frac{4}{(\varepsilon \sigma)^{2}} \cdot \frac{e^{-\xi /(\varepsilon \sigma)}}{\left(1+\frac{1}{\varepsilon \sigma} e^{-\xi /(\varepsilon \sigma)}\right)^{3}}
$$

Consequently, $h_{i}=x_{i+1}-x_{i}$ increases monotonically. Because $\xi^{\prime}(1 / 2)>1$, the step sizes satisfy

$$
2 N^{-1}>h_{i} \geq N^{-1} \quad \text { for } i \geq \frac{N}{2}
$$

x_{1} satisfies

$$
x_{1}+1-\frac{2}{N}=e^{-x_{1} /(\varepsilon \sigma)}
$$

It follows

$$
x_{1}=C \varepsilon\left(N^{-1}+o\left(N^{-1}\right)\right)
$$

as usual for the first mesh point of a layer-adapted mesh.
The definitions (2), (3) imply

$$
e^{-x_{i} /(\varepsilon \sigma)}-e^{-x_{i+1} /(\varepsilon \sigma)}=\frac{2}{N}-\left(x_{i+1}-x_{i}\right)<\frac{2}{N}
$$

3. Convergence results for the modified Bakhvalov mesh

$\operatorname{Lin} ß[2]$ introduced the quantity

$$
\vartheta^{[p]}:=\max _{i=1, \ldots, N} \int_{x_{i-1}}^{x_{i}}\left(1+\varepsilon^{-1} e^{-s /(p \varepsilon)}\right) d s
$$

and proved in Chapter 4 of [2] uniform convergence results for several difference schemes, including convergence acceleration techniques. For simple upwinding one has in the discrete maximum norm

$$
\left\|u-u^{N}\right\|_{\infty, d} \leq C \vartheta^{[1]}
$$

https://daneshyari.com/en/article/1707923

Download Persian Version:
https://daneshyari.com/article/1707923

Daneshyari.com

[^0]: * Corresponding author. Tel.: +381214852278; fax: +381216350770.

 E-mail addresses: hans-goerg.roos@tu-dresden.de (H.-G. Roos), ljiljap@uns.ac.rs, ljiljap@eunet.rs (L. Teofanov), zora@uns.ac.rs (Z. Uzelac).

