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a b s t r a c t

We consider a few numerical methods for solving a one-dimensional convection–diffusion
singularly perturbed problem. More precisely, we introduce a modified Bakvalov
mesh generated using some implicitly defined functions. Properties of this mesh and
convergence results for several methods on it are given. Numerical results are presented in
support of the theoretical considerations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the singularly perturbed boundary value problem

−εu′′
− b(x)u′

+ c(x)u = f (x) in (0, 1), u(0) = u(1) = 0, (1)

assuming that 0 < ε ≪ 1, b(x) > 1 for x ∈ [0, 1] and that functions b, c, f are sufficiently smooth. Then, u can be
decomposed as follows: u = S + E, where the smooth part S and the layer component E satisfy

|S(k)
| ≤ C, |E(k)

| ≤ Cε−ke−x/ε k = 0, 1, . . . ,m (for any prescribed m),

where C is a generic constant independent of ε.
For solving (1) numerically, Bakhvalov [1] defined a fine mesh in the layer region at x = 0 by

q(1 − e−xi/(σε)) =
i
N

.

Away from the layer, an equidistant mesh is used with a transition point τ such that the resulting mesh generating function
is from C1, i.e.,

ϕ(t) =


−σε ln

q − t
q

:= χ(t) for t ∈ [0, τ ]

linear for t ∈ [τ , 1].

τ solves a nonlinear equation. Bakhvalov type meshes use some approximations τ̃ with χ(τ̃ ) = σε ln(
q

σε
); see [2].
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It is practically inconvenient to use different mesh generating functions in different regions. Therefore, we propose to
generate a mesh using the implicitly defined function

ξ(t) − e−ξ(t)/(σε)
+ 1 − 2t = 0 (2)

and to set

xi = ξ(i/N), i = 0, 1, . . . ,N − 1, xN = 1. (3)

We shall study the properties of the mesh based mostly on (2). Practically, one can use the Lambert W-function to generate
the mesh, because (see [3]) we have the explicit representation

xi =
2i
N

− 1 + εσW


1
εσ

e
1− 2i

N
εσ


.

Remark that x = −b−W (−a−b ln a)/ ln a solves ax = x+ b. TheW -function is, e.g., in MATLAB andMathematica available.
The parameter σ determines the grading of the mesh inside the layer. In general, we use σ = l (or l + 1) in combination

with a discretization method of order l.
This mesh was already described in [4], but without obtaining any uniform convergence result. In contrast to that paper

we present as well optimal convergence estimates for some difference methods as almost optimal error estimates for finite
elements. Moreover, the authors of [4] compared the new mesh with the much simpler Shishkin mesh. This is not fair: it
makes only sense to compare it with the Bakhvalov mesh.

2. Properties of the modified Bakhvalov mesh

Let us assume N to be even. The point xN/2 solves

xN/2 = e−xN/2/(σε) or xN/2 = εσW


1
σε


.

Therefore one gets (if we use the second representation we needW (z) = ln z + o(ln z) for z → ∞)

xN/2 = εσ


ln


1
εσ


+ o


ln


1
εσ


.

Differentiation of (2) yields

ξ ′
=

2
1 +

1
εσ

e−ξ/(εσ )
and ξ ′′

=
4

(εσ )2
·

e−ξ/(εσ )
1 +

1
εσ

e−ξ/(εσ )
3 .

Consequently, hi = xi+1 − xi increases monotonically. Because ξ ′(1/2) > 1, the step sizes satisfy

2N−1 > hi ≥ N−1 for i ≥
N
2

.

x1 satisfies

x1 + 1 −
2
N

= e−x1/(εσ ).

It follows

x1 = Cε(N−1
+ o(N−1))

as usual for the first mesh point of a layer-adapted mesh.
The definitions (2), (3) imply

e−xi/(εσ )
− e−xi+1/(εσ )

=
2
N

− (xi+1 − xi) <
2
N

.

3. Convergence results for the modified Bakhvalov mesh

Linß [2] introduced the quantity

ϑ [p]
:= max

i=1,...,N

 xi

xi−1

(1 + ε−1e−s/(pε))ds

and proved in Chapter 4 of [2] uniform convergence results for several difference schemes, including convergence
acceleration techniques. For simple upwinding one has in the discrete maximum norm

∥u − uN
∥∞,d ≤ Cϑ [1],
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