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a b s t r a c t

We prove the nonexistence of positive radial solutions for the problem
−∆pu = λf (u) in Ω,
u = 0 on ∂Ω,

where ∆p denotes the p-Laplacian, p > 1, Ω is a ball or an annulus in RN ,N > 1, f :

[0, ∞) → R is at least p-linear, f (0) < 0, and is not required to be increasing or to have
exactly one zero. Our results extend previous nonexistence results in the literature.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the boundary value problem
−∆pu = λf (u) in Ω,
u = 0 on ∂Ω,

(1.1)

where∆pu = div(|∇u|p−2
∇u), p > 1,Ω is a ball or an annulus inRN ,N > 1, f : [0, ∞) → R is locally Lipschitz continuous

and f (0) < 0.
Problems of the type (1.1) occur in some physical models such as non-Newtonian fluids and chemical reactions, see

e.g. [1,2]. In non-Newtonian fluids, the case p ∈ (1, 2) represents pseudo-plastic while p > 2 corresponds to dilatant fluids.
The case p = 2 represents Newtonian fluids.

We are interested in studying nonexistence of positive solutions to (1.1) in the non-positone case i.e. f (0) < 0. When
Ω = B(0, R), a ball with radius R, nonnegative solutions to (1.1) with f (0) ≠ 0 are positive, radially symmetric and
decreasing [3], thus solve the ODE problem

−(rN−1φ(u′))′ = λrN−1f (u), 0 < r < R,
u′(0) = 0, u(R) = 0, (1.2)

where φ(u) = |u|p−2u.
When f (0) < 0 and f is p-superlinear at ∞ i.e. limu→∞ f (u)/up−1

= ∞, the existence of a positive solution to (1.2) for
λ small was established in [4,5], while nonexistence result for λ large was considered in [6] under the assumptions that f is
nondecreasing, has exactly one zero, and lims→∞ f (s)/sq > 0 for some q > p − 1. Related nonexistence results for positive
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radial solutions to (1.1) in the annulus Ω = B(0, R) \ B(0, R0) i.e.
−(rN−1φ(u′))′ = λrN−1f (u), 0 < R0 < r < R,
u(R0) = 0, u(R) = 0, (1.3)

can be found in [7–9] in the case p = 2.
In this note, we shall improve the nonexistence results in [7–9,6] by allowing f to be non-monotone with more than one

zero and lim infs→∞ f (s)/sp−1 > 0. Our results also complement an existence result to (1.3) for λ small and p > 1 in [10]. To
be precise, we shall make the following assumptions:

(A1) f : [0, ∞) → R is locally Lipschitz continuous and f (0) < 0.
(A2) There exists a constant A > 0 such that F(s) < 0 for 0 < s ≤ A and f (s) > 0 for s ≥ A, where F(s) =

 s
0 f (t)dt.

(A3) lim infs→∞ f (s)/sp−1 > 0.
Our main results are

Theorem 1.1. Let Ω = B(0, R) and suppose (A1)–(A3) hold. Then there exists a constant λ0 > 0 such that problem (1.1) has
no nonnegative solutions for λ > λ0.

Theorem 1.2. Let Ω = B(0, R) \ B(0, R0), 0 < R0 < R. Suppose (A1)–(A3) hold and p ∈ (1, 2]. Then there exists a constant
λ0 > 0 such that problem (1.1) has no positive radial solutions for λ > λ0.

Example 1.1. Let f (s) = (sγ −a)(sγ −b)(sγ −c),where γ , a, b, c are positive constants with γ ≥ (p−1)/3, a < b < c and
b < a(γ + 1). Clearly, (A1) and (A3) hold. Since f (s) < (b − a)(c − a)(sγ − a) for s ∈ (0, b1/γ ], s ≠ a1/γ , it follows that

F(b1/γ ) < (b − a)(c − a)
 b1/γ

0
(sγ − a)ds = (b − a)(c − a)b1/γ


b

γ + 1
− a


< 0,

which implies F(s) < 0 for s ∈ (0, c1/γ ] and so (A2) holds for some A > c1/γ . Hence Theorem 1.1 holds for p > 1 while
Theorem 1.2 holds for p ∈ (1, 2]. Note that f is non-monotone with exactly three zeros on (0, ∞), and lims→∞ f (s)/sp−1

∈

(0, ∞) for γ = (p − 1)/3.

2. Proof of the main results

In view of (A1), (A3) and the fact that lims→0+ F(s)/s = f (0) < 0, there exist constants k, K > 0 such that

− F(s) ≥ ks for s ∈ (0, A] (2.1)

and

f (s) ≥ K for s ≥ A. (2.2)

Note that if u is a solution of (1.2) or (1.3) then
p − 1
p

|u′
|
p
+ λF(u)

′

= −
N − 1

r
|u′

|
p

≤ 0,

which implies

|u′
|
p

≥ −λcpF(u) (2.3)

for all r, where cp = p/(p − 1).

Proof of Theorem 1.1. Let u be a nonnegative solution to (1.1). Then u is radially symmetric, positive, and decreasing
[3, Theorem 1] and thus solves (1.2).

We claim that u(R/4) > A for λ ≫ 1. Suppose u(R/4) ≤ A. Then u ≤ A on [R/4, R), which together with (2.1) and (2.3),
implies

−u′
≥ (λkcpu)1/p,

or, equivalently,

−
u′

u1/p
≥ (λkcp)1/p on [R/4, R). (2.4)

Integrating (2.4) on [R/4, 3R/4] gives

u
p−1
p (R/4) ≥ (R/2)(λkcp)1/pc−1

p > A

for λ large, a contradiction which proves the claim. Hence, by (2.2),

−(rN−1φ(u′))′ = λrN−1f (u) ≥ λrN−1K on [0, R/4].
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