Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

We prove the nonexistence of positive radial solutions for the problem

where Δ_p denotes the *p*-Laplacian, p > 1, Ω is a ball or an annulus in \mathbb{R}^N , N > 1, f:

 $[0,\infty) \rightarrow \mathbb{R}$ is at least *p*-linear, f(0) < 0, and is not required to be increasing or to have

exactly one zero. Our results extend previous nonexistence results in the literature.

Nonexistence of positive solutions for a class of *p*-Laplacian boundary value problems

ABSTRACT

Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, United States

ARTICLE INFO

Article history: Received 6 December 2013 Received in revised form 30 December 2013 Accepted 31 December 2013 Available online 20 January 2014

Keywords: p-Laplacian p-superlinear Positive solutions Nonexistence

1. Introduction

Consider the boundary value problem

$$\begin{cases} -\Delta_p u = \lambda f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

 $\begin{aligned} -\Delta_p u &= \lambda f(u) \quad \text{in } \Omega, \\ u &= 0 \quad \text{on } \partial \Omega, \end{aligned}$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u), p > 1, \Omega$ is a ball or an annulus in $\mathbb{R}^N, N > 1, f : [0, \infty) \to \mathbb{R}$ is locally Lipschitz continuous and f(0) < 0.

Problems of the type (1.1) occur in some physical models such as non-Newtonian fluids and chemical reactions, see e.g. [1,2]. In non-Newtonian fluids, the case $p \in (1, 2)$ represents pseudo-plastic while p > 2 corresponds to dilatant fluids. The case p = 2 represents Newtonian fluids.

We are interested in studying nonexistence of positive solutions to (1.1) in the non-positone case i.e. f(0) < 0. When $\Omega = B(0, R)$, a ball with radius R, nonnegative solutions to (1.1) with $f(0) \neq 0$ are positive, radially symmetric and decreasing [3], thus solve the ODE problem

$$\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}f(u), & 0 < r < R, \\ u'(0) = 0, & u(R) = 0, \end{cases}$$
(1.2)

where $\phi(u) = |u|^{p-2}u$.

When f(0) < 0 and f is p-superlinear at ∞ i.e. $\lim_{u\to\infty} f(u)/u^{p-1} = \infty$, the existence of a positive solution to (1.2) for λ small was established in [4,5], while nonexistence result for λ large was considered in [6] under the assumptions that f is nondecreasing, has exactly one zero, and $\lim_{s\to\infty} f(s)/s^q > 0$ for some q > p - 1. Related nonexistence results for positive

* Tel.: +1 6623257152. E-mail address: dang@math.msstate.edu.

Applied

Mathematics Letters

© 2014 Elsevier Ltd. All rights reserved.

^{0893-9659/\$ -} see front matter © 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.aml.2013.12.013

radial solutions to (1.1) in the annulus $\Omega = B(0, R) \setminus \overline{B(0, R_0)}$ i.e.

$$\begin{cases} -(r^{N-1}\phi(u'))' = \lambda r^{N-1}f(u), & 0 < R_0 < r < R, \\ u(R_0) = 0, & u(R) = 0, \end{cases}$$
(1.3)

can be found in [7–9] in the case p = 2.

In this note, we shall improve the nonexistence results in [7–9,6] by allowing *f* to be non-monotone with more than one zero and $\liminf_{s\to\infty} f(s)/s^{p-1} > 0$. Our results also complement an existence result to (1.3) for λ small and p > 1 in [10]. To be precise, we shall make the following assumptions:

 $(A1)f : [0, \infty) \to \mathbb{R}$ is locally Lipschitz continuous and f(0) < 0.

(A2) There exists a constant A > 0 such that F(s) < 0 for $0 < s \le A$ and f(s) > 0 for $s \ge A$, where $F(s) = \int_0^s f(t)dt$. (A3) $\liminf_{s\to\infty} f(s)/s^{p-1} > 0$.

Our main results are

Theorem 1.1. Let $\Omega = B(0, R)$ and suppose (A1)–(A3) hold. Then there exists a constant $\lambda_0 > 0$ such that problem (1.1) has no nonnegative solutions for $\lambda > \lambda_0$.

Theorem 1.2. Let $\Omega = B(0, R) \setminus \overline{B(0, R_0)}$, $0 < R_0 < R$. Suppose (A1)–(A3) hold and $p \in (1, 2]$. Then there exists a constant $\lambda_0 > 0$ such that problem (1.1) has no positive radial solutions for $\lambda > \lambda_0$.

Example 1.1. Let $f(s) = (s^{\gamma} - a)(s^{\gamma} - b)(s^{\gamma} - c)$, where γ , a, b, c are positive constants with $\gamma \ge (p-1)/3$, a < b < c and $b < a(\gamma + 1)$. Clearly, (A1) and (A3) hold. Since $f(s) < (b - a)(c - a)(s^{\gamma} - a)$ for $s \in (0, b^{1/\gamma}]$, $s \ne a^{1/\gamma}$, it follows that

$$F(b^{1/\gamma}) < (b-a)(c-a) \int_0^{b^{1/\gamma}} (s^{\gamma}-a) ds = (b-a)(c-a)b^{1/\gamma} \left(\frac{b}{\gamma+1}-a\right) < 0,$$

which implies F(s) < 0 for $s \in (0, c^{1/\gamma}]$ and so (A2) holds for some $A > c^{1/\gamma}$. Hence Theorem 1.1 holds for p > 1 while Theorem 1.2 holds for $p \in (1, 2]$. Note that f is non-monotone with exactly three zeros on $(0, \infty)$, and $\lim_{s\to\infty} f(s)/s^{p-1} \in (0, \infty)$ for $\gamma = (p-1)/3$.

2. Proof of the main results

In view of (A1), (A3) and the fact that
$$\lim_{s\to 0^+} F(s)/s = f(0) < 0$$
, there exist constants $k, K > 0$ such that

$$-F(s) \ge ks \quad \text{for } s \in (0, A] \tag{2.1}$$

and

$$f(s) \ge K \quad \text{for } s \ge A.$$
 (2.2)

Note that if u is a solution of (1.2) or (1.3) then

$$\left(\frac{p-1}{p}|u'|^p + \lambda F(u)\right)' = -\frac{N-1}{r}|u'|^p \le 0$$

which implies

$$|u'|^p \ge -\lambda c_p F(u) \tag{2.3}$$

for all *r*, where $c_p = p/(p-1)$.

Proof of Theorem 1.1. Let u be a nonnegative solution to (1.1). Then u is radially symmetric, positive, and decreasing [3, Theorem 1] and thus solves (1.2).

We claim that u(R/4) > A for $\lambda \gg 1$. Suppose $u(R/4) \le A$. Then $u \le A$ on [R/4, R), which together with (2.1) and (2.3), implies

$$-u' \geq (\lambda k c_p u)^{1/p}$$

or, equivalently,

$$-\frac{u'}{u^{1/p}} \ge (\lambda k c_p)^{1/p} \quad \text{on } [R/4, R).$$
(2.4)

Integrating (2.4) on [R/4, 3R/4] gives

$$u^{\frac{p-1}{p}}(R/4) \ge (R/2)(\lambda kc_p)^{1/p}c_p^{-1} > A$$

for λ large, a contradiction which proves the claim. Hence, by (2.2),

$$-(r^{N-1}\phi(u'))' = \lambda r^{N-1}f(u) \ge \lambda r^{N-1}K$$
 on $[0, R/4]$.

Download English Version:

https://daneshyari.com/en/article/1707924

Download Persian Version:

https://daneshyari.com/article/1707924

Daneshyari.com