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a b s t r a c t

This letter derives the transform relationship between differential equations to difference
equations and vice-versa, applied to computer control systems. The key is to obtain the
rational fraction transfer function model of a time-invariant linear differential equation
system, using the Laplace transform, and to obtain the impulse transfer function model
of a time-invariant linear difference equation, using the shift operator. Finally, we find
the discrete-time models of the first-order, second-order and third-order systems from
their continuous-time models and vice-versa and find the mapping relationship between
the coefficients of discrete-time models and the continuous-time models using the
bilinear transform. An example is provided to demonstrate the proposed model transform
methods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the continuous-time system described by a time-invariant linear differential equation [1]:

y(n)(t) + a1y(n−1)(t) + · · · + an−1y(1)(t) + any(t) = b1u(n−1)(t) + b1u(n−1)(t) + · · · + bn−1u(1)(t) + bnu(t), (1)
where u(t) and y(t) denote the input and output of the system, respectively, t represents the time variable, and ai and bi are
the parameters of this system.

Define the Laplace transform of the integrable function f (t) ∈ R as follows:

F(s) := L [f (t)] =


+∞

0
f (t)e−stdt.

Under the zero initial values, taking the Laplace transform to both sides of (1) gives
(sn + a1sn−1

+ · · · + an−1s + an)Y (s) = (b0sn + b1sn−1
+ b2sn−2

+ · · · + bn−1s + bn)U(s).
Thus, we can obtain the transfer function of the system:

G(s) :=
Y (s)
U(s)

=
b0sn + b1sn−1

+ · · · + bn−1s + bn
sn + a1sn−1 + · · · + an−1s + an

. (2)
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Consider the discrete-time system described by a time-invariant linear difference equation:

y(k) + α1y(k − 1) + α2y(k − 2) + · · · + αny(k − n) = β0u(k) + β1u(k − 1) + β2u(k − 2) + · · · + βnu(k − n), (3)

where u(k) := u(t)|t=kh and y(k) := y(t)|t=kh, and h represents the sampling period.
Let z denote a unit forward shift operator or the Z transform operator with zx(k) = x(k + 1) and z−1x(k) = x(k − 1).

Eq. (3) can be equivalently written as

(1 + α1z−1
+ α2z−2

+ · · · + αnz−n)Y (z) = (β0 + β1z−1
+ β2z−2

+ · · · + βnz−n)U(z).

Its impulse transfer function is given by

H(z) :=
Y (z)
U(z)

=
β0 + β1z−1

+ β2z−2
+ · · · + βnz−n

1 + α1z−1 + α2z−2 + · · · + αnz−n

=
β0zn + β1zn−1

+ β2zn−2
+ · · · + βn

zn + α1zn−1 + α2zn−2 + · · · + αn
. (4)

The integer number n in G(s) and H(z) is called the system order [2].
Practical systems are generally controlled by using digital computers. Continuous-time signals are sampled periodically

and continuous-time systems are often transformed into their corresponding discrete-time systems for control
requirements [3]. In the area of system identification, discrete-time models are often used for parameter estimation [4–6].
This letter provides themethods for this purpose and gives the relationship between the coefficients of the continuous-time
systems and the discrete-time systems.

The bilinear transform (also known as the Tustinmethod) is used in digital signal processing [7] and discrete-time control
theory [8] to transform continuous-time system representations to discrete-time and vice versa. In practice, most systems
are continuous-time systems. With the development of computer technology, physical systems are generally controlled
by digital computers [9–11]. So it is necessary to study new methods which transform a continuous-time system into a
discrete-time system. Such methods include the Euler transform [12], the step invariance transform or the zero-order hold
based transform [13], the bilinear transform or the Tustin transform [14] between s-domain and z-domain, and the well-
known z − s transform proposed by Ding [13].

The Euler transform is very simple and easy to implement but the disadvantage is that its transform accuracy is poor and
it is difficult tomeet the accuracy requirements. The step invariance transform, i.e., the zero-order hold based transform [12]
is based on the state spacemodels of dynamic systems and can guarantee that the output of the discrete-time system is equal
to that of the continuous-time system at sampling points. Therefore, it is widely used in computer control systems. However,
for the linear systems described by the transfer function models (i.e., continuous-time systems), the bilinear transform can
transform them into the impulse transfer functions (i.e., discrete-time systems). This letter derives themapping relationship
between the coefficients of the continuous-time systems and the discrete-time systems for the first-order, the second-order
and the third-order rational fraction transfer function models.

The rest of this letter is organized as follows. Sections 2 to 4 give the relations of the continuous-time models and
the discrete-time models of the first-order, the second-order and the third-order systems and vice-versa according to the
bilinear transform. Section 5 offers an example to show that the proposed methods are effective.

2. The first-order systems

2.1. The first-order continuous-time system

Consider the following first-order continuous-time system,

G(s) =
b

s + a
, (5)

where the variable s is the Laplace operator, and a and b are the parameters of the system.
It is well-known that the z operator and s operator have the following relation:

z = ehs,

where h > 0 denotes the sampling period. Using the Taylor series expansion gives

z = ehs =
eh/2s

eh/2s
=

1 + h/2s +
1
2! (h/2s)

2
+ · · ·

1 − h/2s +
1
2! (h/2s)

2 − · · ·
.

Taking the first-order approximation yields

z−1
=

2 − hs
2 + hs

, (6)
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