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a b s t r a c t

This paper deals with the problem of solving the general coupled matrix equations
p

j=1

AijXjBij = Ci, i = 1, 2, . . . , p,

(including several linear matrix equations as special cases) which plays important roles in
system and control theory. Based on the conjugate gradients squared (CGS) method, a sim-
ple and efficientmatrix algorithm is derived to solve the general coupledmatrix equations.
The derived iterative algorithm is illustrated by two numerical examples and is compared
with other popular iterative solvers in use today.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, the numerical solutions of the general coupled matrix equations
p

j=1

AijXjBij = Ci, i = 1, 2, . . . , p, (1.1)

are considered, where Aij, Xj, Bij ∈ Cm×m for i, j = 1, 2, . . . , p. This kind of matrix equations includes various linear matrix
equations such as

AXB = C, (1.2)
AXB + CYD = E, (1.3)
A1XB1 = C1,
A2XB2 = C2,

(1.4)

and 
AX − YB = E,
CX − YD = F .

(1.5)

Many problems in computational mathematics, control and system theory require the solution of the above matrix equa-
tions [1–3]. Hence solving matrix equations has been widely discussed in a large number of papers [4–7]. By applying the
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canonical correlation decomposition (CCD) of matrix pairs, Xu et al. obtained expressions of the least-squares solutions of
thematrix equation (1.3), and sufficient and necessary conditions for the existence and uniqueness of the solutions [8]. In [9],
a finite iterative method was introduced for solving the linear matrix equation (1.3) with unknown real matrices X and Y .
Navarra et al. [10] introduced a representation of the general common solution X to thematrix equation (1.4). In [11], an ana-
lytical expression of the least squares Hermitian solutionwith the least norm of thematrix equation (1.4) over the skew field
of quaternionswas derived. Liao and Li applied the projection theorem,GSVDandCCD to investigate the solution of the linear
matrix equation (1.4). Zhou et al. proposed a general iterative algorithm to produce the unique solution to general coupled
linear matrix equations by means of the gradient search principle [3]. The gradient-based iterative (GI) algorithms [12,13]
and the least squares based iterative algorithm [14] for solving (coupled)matrix equationswere presented based on the hier-
archical identification principle [15]. By development of the idea of the conjugate gradient least square method (CGLS) [16],
some finite iterative methods were introduced for finding reflexive, generalized centro-symmetric and generalized bisym-
metric solutions of (1.2)–(1.5) [17–19]. Recently based on a matrix form of the least-squares QR-factorization (LSQR) algo-
rithm, the LSQR iterative method was proposed for solving (1.2) and (1.1) [20,21].

The CGS method is a Krylov subspace algorithm that can be applied to find fast solutions of the non-Hermitian linear
systems

Ax = b, (1.6)

where A ∈ Cm×m and b ∈ Cm. The purpose of this paper is to extend the CGS method for solving the general coupled matrix
equation (1.1).

The remainder of this paper is organized as follows. In Section 2 first by recalling the CGSmethod and using the Kronecker
product and the vectorization operator, the CGS method is extended to solve the general coupled matrix equation (1.1). A
numerical example is presented to verify the method and compare the convergence rate between the method and some
existing methods in Section 3.

Throughout this paper, the following notation is used. Cm×n (Rm×n) stands for the sets of all m × n complex (real) ma-
trices. For any matrix A ∈ Cm×n, the symbols AH and tr(A) denote the conjugate transpose and the trace of A, respectively.
For A = (a1, a2, . . . , an) = (aij) and a matrix B, A ⊗ B = (aijB) is a Kronecker product and vec(A) is a vector defined by
vec(A) = (aT1, a

T
2, . . . a

T
n)

T . The inner product is defined ⟨A, B⟩ = trace(BHA) for all A, B ∈ Cm×n, then Cm×n is a Hilbert inner
product space and the norm of a matrix generated by this inner product is the matrix Frobenius norm ∥.∥. The notation

Km(d, A) := {d, Ad, A2d, . . . , Am−1d},

is used for themth Krylov subspace of Cm generated by d ∈ Cm and them × mmatrix A. The set of all complex polynomials
of degree at mostm is denoted by

Pm := {ϕm(λ) ≡ γ0 + γ1λ + · · · + γmλm
| γ0, γ1, . . . , γm ∈ C}.

2. A new algorithm

In this section, first the CGS method is surveyed for solving (1.6). The CGS method is based on the biconjugate gradient
(BiCG) method and not the original CG algorithm. One major drawback of the BiCG method is that it requires a multiplica-
tion with the conjugate transpose of A. A number of hybrid BiCG methods such as CGS have been presented to improve the
convergence of BiCG and to avoid multiplication by AH . The CGS method avoids using AH and accelerates the convergence
by squaring the BiCG polynomials [22]. The CGS method constructs an approximation xn ∈ x0 + K2n(r0, A) such that the
residual is given by

rn = b − Axn = (ϕn(A))2r0. (2.1)

The CGS algorithm can be summarized as follows [23]:

Algorithm 1 (CGS Algorithm). Choose x0 ∈ Cm;
Set p0 = u0 = r0 = b − Ax0, v0 = Ap0;
Chooser0 such that ρ0 = ⟨r0,r0⟩ ≠ 0 (for exampler0 = r0);
For n = 1, 2, . . . until (∥rn−1∥/∥b∥) ≤ ε, do:
Set σn−1 = ⟨vn−1,r0⟩, αn−1 = ρn−1/σn−1;
qn = un−1 − αn−1vn−1;
Set xn = xn−1 + αn−1(un−1 + qn);
rn = rn−1 − αn−1A(un−1 + qn);
Set ρn = ⟨rn,r0⟩, βn = ρn/ρn−1;
un = rn + βnqn;
pn = un + βn(qn + βnpn−1); vn = Mpn.

In the above algorithm, the stopping tolerance ε is a small positive number. In exact arithmetic, Algorithm 1 terminates after
a finite number, say n∗, of iterations. Usually, xn∗ = A−1b is the solution of the linear systems (1.6) [23]. For more details
about the CGS algorithm see [23,22,24].
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