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a b s t r a c t

We extend the applicability of the augmented dual-mixed method introduced recently in
Gatica (2007), Gatica et al. (2009) to the problem of linear elasticity with mixed boundary
conditions. The method is based on the Hellinger–Reissner principle and the symmetry
of the stress tensor is imposed in a weak sense. The Neumann boundary condition is
prescribed in the finite element space. Then, suitable Galerkin least-squares type terms
are added in order to obtain an augmented variational formulation which is coercive in
the whole space. This allows to use any finite element subspaces to approximate the
displacement, the Cauchy stress tensor and the rotation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Mixed finite element methods are typically used in linear elasticity to avoid the effects of locking. They also allow to
approximate directly unknowns of physical interest, such as the stresses. We consider here the mixed method of Hellinger
and Reissner, that provides simultaneous approximations of the displacementu and the stress tensorσ. The symmetry of the
stress tensor prevents the extension of the standard dual-mixed formulation of the Poisson equation to this case. In general,
the symmetry of σ is imposed weakly, through the introduction of the rotation as an additional unknown, and stable mixed
finite elements for the linear elasticity problem involve many degrees of freedom (see, for instance, [1]).

The application of stabilization techniques allows to use simpler finite element subspaces, including convenient equal-
order interpolations that are generally unstable within themixed approach. Recently, a new stabilizedmixed finite element
method was presented in [2] for the problem of linear elasticity in the plane. This method leads to a well-posed, locking-
free Galerkin scheme for any choice of finite element subspaces when homogeneous Dirichlet boundary conditions are
prescribed. Moreover, in the simplest case it requires less degrees of freedom than the classical PEERS or BDM. The method
was successfully extended in [3] to the case of non-homogeneous Dirichlet boundary conditions; the three-dimensional
version can be found in [4].

The case of mixed boundary conditions, which is the most usual in practice, was studied only in [2]. There the non-
homogeneous Neumann boundary condition is imposed in a weak sense, which entails some difficulties. Namely, it is
necessary to introduce the trace of the displacement on the Neumann boundary as an extra unknown and the resulting
variational formulation has a saddle-point structure. As a consequence, the well-posedness and convergence of the Galerkin
scheme has to be studied for each particular choice of discrete spaces. In particular, the method proposed in [2] requires the
use of an independent mesh of the Neumann boundary that has to satisfy a compatibility condition with the mesh induced
by the triangulation of the domain. This turns the implementation of the method difficult, specially if one wants to apply
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adaptive refinement algorithms. On the other hand, due to some technical difficulties, it is not possible to extend themethod
analyzed in [3,4] to the case of mixed boundary conditions if the Neumann boundary condition is imposed weakly.

In this work, we consider the mixed method of Hellinger and Reissner and impose the Neumann boundary condition
in a strong sense. Then, we follow [3,4] and add appropriate Galerkin least-squares type terms. In this way, we avoid the
difficulties from [2] and extend the results from [3,4] to the linear elasticity problem with mixed boundary conditions.
Specifically, we obtain a Galerkin scheme that is well-posed and free of locking for any choice of finite element subspaces.
As an example, we define a family of finite element subspaces and provide the corresponding error estimates.

The rest of the paper is organized as follows. In Section 2, we recall the usual dual-mixed variational formulation of the
linear elasticity problemwithmixed boundary conditions. In Section 3,we introduce and analyze the augmenteddual-mixed
variational formulation. Finally, in Section 4, we analyze the corresponding discrete scheme and show that it is well-posed
and free of locking for any choice of finite element subspaces. We also provide optimal error estimates for a family of finite
element subspaces. Throughout the paper C denotes a generic constant.

2. Dual-mixed variational formulation

Let Ω ⊂ Rd (d = 2, 3) be a bounded and simply connected domain with a Lipschitz-continuous boundary Γ , and let
ΓD and ΓN be two disjoint subsets of Γ such that ΓD and ΓN have positive measure and Γ = Γ̄D ∪ Γ̄N . We consider the
problem of linear elasticity with non-homogeneous mixed boundary conditions, that is, given a volume force f ∈ [L2(Ω)]d,
a prescribed displacement uD ∈ [H1/2(ΓD)]

d and a traction g ∈ [H−1/2(ΓN)]d, we look for the displacement vector field u
and the stress tensor field σ of an isotropic linear elastic material occupying the region Ω:

−div(σ) = f, σ = Cε(u) in Ω,
u = uD on ΓD, σn = g on ΓN ,

(2.1)

where ε(u) :=
1
2 (∇u + (∇u)t) is the strain tensor of small deformations, n is the unit outward normal to Γ , and C is the

elasticity operator determined by Hooke’s law, that is,

Cζ := λ tr(ζ)I + 2µζ, ∀ζ ∈ [L2(Ω)]d×d,

where I denotes the identity matrix of Rd×d and λ, µ > 0 are the Lamé parameters. We recall that the inverse operator C−1

is known explicitly:

C−1ζ :=
1
2µ

ζ −
λ

2µ(dλ + 2µ)
tr(ζ)I, ∀ζ ∈ [L2(Ω)]d×d.

Our aim is to extend the applicability of the augmentedmixed finite elementmethod introduced in [3,4] to problem (2.1).
With that purpose, we consider the mixedmethod of Hellinger and Reissner, that provides simultaneous approximations of
the displacement u and the stress tensor σ, and impose the symmetry of σ in a weak sense, through the introduction of the
rotation γ :=

1
2 (∇u − (∇u)t) as an additional unknown. Then, the inverted constitutive law can be written in the form

∇u − γ = C−1σ, in Ω. (2.2)

We multiply the equilibrium equation and Eq. (2.2) by tests functions, integrate by parts and use the Dirichlet boundary
condition to obtain the following dual-mixed variational formulation of problem (2.1): Find (σ, (u, γ)) ∈ Hg × Q such thata(σ, τ) + b(τ, (u, γ)) = ⟨τn,uD⟩ΓD , ∀τ ∈ H0,

b(σ, (v, η)) = −


Ω

f · v, ∀(v, η) ∈ Q ,
(2.3)

where Hg := {τ ∈ H(div; Ω) : τn = g on ΓN}, H0 := {τ ∈ H(div; Ω) : τn = 0 on ΓN}, Q := [L2(Ω)]d × [L2(Ω)]d×d
skew, and

the bilinear forms a : H(div; Ω) × H(div; Ω) → R and b : H(div; Ω) × Q → R are defined by

a(ζ, τ) :=


Ω

C−1ζ : τ, b(τ, (v, η)) :=


Ω

v · div(τ) +


Ω

η : τ, (2.4)

for all ζ, τ ∈ H(div; Ω) and for all (v, η) ∈ Q .
We remark that, in contrast to [2], we impose the Neumann boundary condition in a strong sense. This will allow us to

derive an augmented variational formulation that will be coercive in the whole space, so that the corresponding Galerkin
scheme will be well-posed and free of locking for any choice of finite element subspaces.

In what follows we assume, without lost of generality, that g = 0 and consider a : H0 × H0 → R and b : H0 × Q → R.
Next we state an auxiliary result that will be applied to prove that problem (2.3) is well-posed.

Lemma 2.1. There exists C > 0, depending only on ΓN and Ω , such that

C∥τ∥
2
H(div;Ω) ≤ ∥τd

∥
2
[L2(Ω)]d×d + ∥div(τ)∥2

[L2(Ω)]d
, ∀τ ∈ H0,

where τd
:= τ −

1
d tr(τ)I denotes the deviator of tensor τ .
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