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a b s t r a c t

This work is devoted to solving the radially symmetric backward heat conduction problem,
starting from the final temperature distribution. The problem is ill-posed: the solution (if it
exists) does not depend continuously on the given data. Amodified Tikhonov regularization
method is proposed for solving this inverse problem. A quite sharp estimate of the error
between the approximate solution and the exact solution is obtainedwith a suitable choice
of regularization parameter. A numerical example is presented to verify the efficiency and
accuracy of the method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The backward heat conduction problem (BHCP) arises in the modeling of heat propagation in thermophysics and the
mechanics of continuous media. The determination of the unknown initial temperature from observable scattered final
temperature data is a requirement in many real applications. The problem is also referred to as the final boundary value
problem. The BHCP is a classical ill-posed problem [1], and special and effective regularization methods are required.

The BHCP has been considered by using different methods in recent decades. For example, Tautenhahn and Schröter [2]
approximated a BHCP by an optimal regularization method. Fu et al. [3] and Nama et al. [4] solved a BHCP by the Fourier
method. Wang [5] established a Shannon wavelet regularization method for solving a BHCP. Ternat et al. [6] studied a BHCP
by Euler and Crank–Nicolson methods. Ma et al. [7] proposed a variational method for solving the BHCP. It is worth men-
tioning that Cheng and Liu [8] studied the two-dimensional BHCP. However, most analytical and numerical methods were
only used for dealing with heat equations with constant coefficients. A few works based on numerical methods have been
presented for backward heat equations with variable coefficients, because the difficulties of these problems are more pro-
nounced than those for the constant coefficient case.

The physical model considered here is a ball of radius r0, and it is considered radially symmetric with a certain surface
heat flux distribution holding at zero. The correspondingly mathematical model can be described via the following radially
symmetric BHCP:

ut = urr +
2
r
ur , 0 < r ≤ r0, 0 < t < T ,

u(r, T ) = ϕ(r), 0 ≤ r ≤ r0,
ur(r0, t) = 0, 0 ≤ t ≤ T ,
u(r, t) bounded in r = 0, 0 ≤ t < T ,

(1.1)
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where r is the radial coordinate, and ϕ(r) denotes the final temperature history of the ball. We want to recover the temper-
ature distribution u(·, t) for 0 ≤ t < T . This problem is ill-posed. Hence, a regularization is needed.

Cheng et al. [9] have approximated the inverse heat conduction problem by a Tikhonov-type regularization method. In
this work, we will use a modified Tikhonov regularization method to stabilize the BHCP (1.1). Introducing a rather technical
inequality, we not only obtain a Hölder continuity but also get a logarithmic Hölder-type convergence error estimate, and
in particular the logarithmic-type convergence estimate at t = 0.

In Section 2 the ill-posedness of problem (1.1) is given. In Section 3 a modified Tikhonov regularization method with
a quite sharp error estimate is provided. Finally, numerical results are given in Section 4, to verify the efficiency of our
proposed method.

2. Ill-posedness

Throughout this work, we denote by L2[0, r0; r2] the Hilbert space of Lebesguemeasurable functions f with weight r2 on
[0, r0]. We denote by (·, ·) and ∥ · ∥ the inner and norm on L2[0, r0; r2], respectively, with the norm

∥f ∥ =

 r0

0
r2 |f (r)|2 dr

1/2

.

As a solution of problem (1.1) we understand a function u(r, t) satisfying (1.1) in the classical sense and for every fixed
t ∈ [0, T ], the function u(·, t) ∈ L2[0, r0; r2]. In this class of functions, if the solution of problem (1.1) exists, then it must be
unique. We assume that u(r, t) is the unique solution of problem (1.1). We can obtain the following lemma.

Lemma 2.1. If the solution of problem (1.1) exists, then it is given by

u(r, t) =

∞
n=1

cne(θn/r0)
2(T−t) Rn(r), (2.1)

where

Rn(r) =
r0 sin(θnr/r0)

θnr
, cn =

4θ3n
 r0
0 r2ϕ(r)Rn(r) dr

r30 (2 θn − sin(2 θn))
. (2.2)

Proof. Applying separation of variables, we seek a solution of problem (1.1) with the form

u(r, t) = υ(t)R(r). (2.3)

Substituting (2.3) into (1.1), we obtain that υ(t) satisfies the equation

υ ′(t)+ λυ(t) = 0, 0 < t ≤ T , (2.4)

and R(r) satisfies the following ordinary equation and boundary conditions:

R′′(r)+ (2/r) R′(r)+ λ R(r) = 0, 0 < r ≤ r0, (2.5)

Rr(r0) = 0, |R(0)| < +∞, (2.6)

where λ is an unknown constant. It is easy to see that the eigenvalue of problem (2.5)–(2.6) λ > 0. So we have the general
solution of Eq. (2.5):

R(r) = A1 j0(r
√
λ)+ A2 y0(r

√
λ), 0 < r ≤ r0, (2.7)

where j0(x) and y0(x) denote the spherical Bessel functions of the first kind and of the second kind, respectively, which are
given by

j0(x) = (sin x)/x, y0(x) = −(cos x)/x.

Using the conditions (2.6) and noting that limx→0 y0(x) = −∞, we have

R(r) = A1 (sin(r
√
λ))/(r

√
λ).

By differentiating R(r)with respect to r and combining with (2.6), we obtain

r0
√
λ = tan(r0

√
λ). (2.8)

We know that the equation x = tan x has the sequence of roots {θn}
∞

n=1 which satisfies 0 < θ1 < θ2 < · · · < θn < · · · ,
limn→∞ θn = ∞. So, the eigenvalues of problem (2.5)–(2.6) are

λn = (θn/r0)2 , n = 1, 2, . . . ,

and the corresponding eigenfunctions are

Rn(r) = r0 sin(θnr/r0)/(θnr), n = 1, 2, . . . . (2.9)
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