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a b s t r a c t

The main goal of this paper is to solve fractional differential equations by means of an
operational calculus. Our calculus is based on a modified shift operator which acts on
an abstract space of formal Laurent series. We adopt Weyl’s definition of derivatives of
fractional order.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Weyl’s definition of the derivative of fractional order α of a function f is given by

tWα
∞
f (t) = (−1)n

1
Γ (n − α)

dn

dtn


∞

t
(z − t)n−α−1f (z)dz, (1)

where Re(α) > 0 and t > 0. The operator tWα
∞

acts with respect to t . We will omit the subscripts t and ∞ of the W in (1).
For more details, see [1,2]. From definition (1) it is easy to verify that

Wαe−at
= aαe−at , (2)

for a ∈ C, Re(a) > 0, see [1, 456].
Our goal in this paper is to solve in a purely algebraicway fractional differential equations of the form q(Wα)f = g , where

q is a polynomial with complex coefficients, by means of the operational calculus introduced by Bengochea and Verde-Star
in [3]. The concepts of equivalence classes and partial fraction decomposition are not used in this theory. We construct a
space of formal Laurent series using the abstract objects pk, k ∈ N. Also we define the modified shift operator L which acts
in the abstract objects as follows: Lp0 = 0 and Lpk = pk−1 for k ≠ 0. Using the properties of Lwe can solve equations of the
form q(L)f = g , where q is a polynomial with complex coefficients, f is unknown and g is a known element in the image of
q(L).

Recently, M. Li and W. Zhao applied Mikusiński’s operational calculus [4] to solve Abel’s type integral equations, see [5],
and in [6] they discuss some important aspects of themin-plus algebra related to the convolution product and the asymptotic
expression for the identity. M. Khan and M.A. Gondal have constructed a new mechanism for the solution of Abel’s type
singular integral equations by means of two-step Laplace decomposition algorithm, see [7].
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2. Algebraic setting and preliminary results

In this section we summarize the work introduced in [3]. Let {pk : k ∈ Z} be a group with multiplication pkpn = pk+n,
for n, k ∈ Z. We denote for F the set of all the formal Laurent series of the form

a =


k∈Z

akpk,

where ak is a complex number for each k ∈ Z and, either, all the ak are equal to zero, or there exists an integer w(a) such
that ak = 0 whenever k < w(a) and aw(a) ≠ 0. In the first case we write a = 0 and define w(0) = ∞. The addition and
the multiplication by complex numbers in F are defined in the usual way. For a =


akpk and b =


bkpk in F we define a

multiplication ab =


ckpk, where

ck =


w(a)≤k≤n−w(b)

akbn−k.

With this multiplication F acquires the structure of field, see [3, p. 332]. Observe that the unit element in F is p0 and the
multiplicative inverse of pn is p−n. For x ∈ C, it is true that

(p0 − xp1)

n≥0

xnpn = p0, (3)

and

(p0 − xp1)k+1p−k


n≥k

n
k


xn−kpn = p0. (4)

We use the notation ex,0 for


n≥0 x
npn and ex,k for


n≥k

 n
k


xn−kpn. The element ex,0 is called the geometric series

associatedwith x. From (3) and (4) it follows that ex,0 and p−kex,k are themultiplicative inverses of p0−xp1 and (p0−xp1)k+1,
respectively. It is easy to verify that p−kex,k = (ex,0)k+1. We define the linear operator L on F by Lpk = pk−1, for k ≠ 0, and
Lp0 = 0. This is called the modified left shift. An important property of L is that

Lk = p−k(p0 − P0 − P1 − P2 − · · · − Pk−1), (5)

where Pn is the projection on the subspace generated by pn, this is Pna = anpn. For more details see [3, p. 333].

3. Operational solution of fractional differential equations

From (2) we have that for β = 1/α

Wαe−t(1+x)β
= (1 + x)e−t(1+x)β , (6)

where Re((1 + x)β) > 0, (1 + x)β = eβ log(1+x), and log denotes the principal branch of the logarithm function. Eq. (6) can
be written as

(Wα
− I) e−t(1+x)β

= xe−t(1+x)β .

We define L = Wα
− I , and

ex,0 = e−t(1+x)β . (7)

Then Eq. (6) acquires the form (L − xI)ex,0 = 0. It is easy to verify that

e−t(1+x)β
=


n≥0


k≥0


kβ
n


(−1)k

tk

k!
xn. (8)

From (7), (8), and the fact that ex,0 =


n≥0 x
npn we obtain

pn =


k≥0


kβ
n


(−1)k

tk

k!
, n ≥ 0. (9)

The first few pn are given by

p0 =


k≥0


kβ
0


(−1)k

tk

k!
= u0(t)e−t ,

p1 =


k≥0


kβ
1


(−1)k

tk

k!
= u1(t)e−t ,
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