Existence of solutions to derivative-dependent, nonlinear singular boundary value problems

Nicholas Fewster-Young, Christopher C. Tisdell*
School of Mathematics and Statistics, The University of New South Wales, UNSW Sydney NSW 2052, Australia

ARTICLE INFO

Article history:

Received 1 July 2013
Received in revised form 23 September 2013
Accepted 24 September 2013

Keywords:

A priori bounds
Singular boundary value problem
Existence of solutions
Derivative dependence
Differential inequalities
Topological methods

Abstract

This article examines two-point boundary value problems (BVPs) for second-order, singular ordinary differential equations where the right-hand-side of the differential equation may depend on the derivative of the solution. We introduce a method to obtain a priori bounds on all potential solutions, including their "derivatives", to the singular BVP under consideration. The approach is based on the application of differential inequalities of singular type. The ideas are then applied to yield new existence results for solutions.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

This work furnishes a priori bounds on the solutions to the singular, nonlinear differential equation

$$
\begin{equation*}
\frac{1}{p}\left(p \mathbf{y}^{\prime}\right)^{\prime}=q \mathbf{f}\left(t, \mathbf{y}, p \mathbf{y}^{\prime}\right), \quad 0<t<T \tag{1.1}
\end{equation*}
$$

when subjected to variations of the following boundary conditions

$$
\begin{align*}
& -\alpha \mathbf{y}(0)+\beta \lim _{t \rightarrow 0^{+}} p(t) \mathbf{y}^{\prime}(t)=\mathbf{c}, \quad(\beta \neq 0) \tag{1.2}\\
& \mathbf{y}(T)=\mathbf{d} \tag{1.3}
\end{align*}
$$

The above boundary conditions feature one Dirichlet condition at one end-point and one Sturm-Liouville condition at the other end-point of the interval of interest. Scalar-valued versions of (1.1)-(1.3) have been considered in papers by Pandey \& Verma [1-3] by applying the method of upper and lower solutions to obtain existence of solutions. Alternatively, our approach is based on the construction and application of differential inequalities and Lyapunov-type functions for systems to obtain a priori bounds on solutions. The results are then applied to yield novel existence results for solutions to the singular boundary value problem (BVP) (1.1) with (1.2), (1.3)

The study of singular BVPs of type (1.1)-(1.3) is partially motivated by their occurrence in the modeling of various physical phenomena, for example, see [4, O'Regan, Ch. 1].

The recent paper by Fewster-Young \& Tisdell [5] analyzed the derivative independent case of (1.1), that is, when $\mathbf{f}=\mathbf{f}(t, \mathbf{y})$. In comparison, the singular BVP associated with the derivative dependent case (1.1) is more challenging, as

[^0]additional bounds on $p \mathbf{y}^{\prime}$ are required in order to apply topological techniques. This work supplies these a priori bounds on $p \mathbf{y}^{\prime}$, advancing the current state of knowledge in the process.

In (1.1), $\mathbf{f} \in C\left([0, T] \times \mathbb{R}^{2 n} ; \mathbb{R}^{n}\right)$, that is, \mathbf{f} is a continuous function from $[0, T] \times \mathbb{R}^{2 n}$ to \mathbb{R}^{n}. In addition

$$
\begin{align*}
& p \in C([0, T] ; \mathbb{R}) \cap C^{1}((0, T) ; \mathbb{R}) \quad \text { with } p>0 \text { on }(0, T) \tag{1.4}\\
& q \in C((0, T) ; \mathbb{R}) \quad \text { with } q>0 \text { on }(0, T) . \tag{1.5}
\end{align*}
$$

By a solution to (1.1) we mean a function $\mathbf{y} \in C\left([0, T] ; \mathbb{R}^{n}\right) \cap C^{2}\left((0, T) ; \mathbb{R}^{n}\right)$ with $p \mathbf{y}^{\prime} \in C\left([0, T] ; \mathbb{R}^{n}\right)$ and \mathbf{y} satisfying (1.1) on ($0, T$).

Our new ideas naturally complement recent advances in the literature, for example, [6,5,7-9] who applied different methods from nonlinear analysis, including fixed-point theory in cones; and Leray-Schauder degree.

For $\mathbf{u} \in \mathbb{R}^{n}$ we define $\|\mathbf{u}\|$ via $\|\mathbf{u}\|^{2}=\langle\mathbf{u}, \mathbf{u}\rangle$, where $\langle\cdot, \cdot\rangle$ is the usual Euclidean dot product of two vectors in \mathbb{R}^{n}.
The Lyapunov-type functions used to form a priori bounds on solutions to (1.1)-(1.3) are motivated by the work of: Fewster-Young \& Tisdell [5], Hartman [10,11, p. 433]; Mawhin [12]; Rudd and Tisdell [13]; and Erbe, Tisdell and Wong [14]. The type of Lyapunov function used here is the function $r(t):=\|\mathbf{y}(t)\|^{2}$ where $\mathbf{y}=\mathbf{y}(t)$ is a solution to (1.1). For all $t \in(0, T)$ we have:

$$
\begin{align*}
& r^{\prime}(t)=2\left\langle\mathbf{y}(t), \mathbf{y}^{\prime}(t)\right\rangle ; \quad \text { and } \tag{1.6}\\
& \begin{aligned}
\left(p(t) r^{\prime}(t)\right)^{\prime}=2\left[\left\langle\mathbf{y}(t), p(t) \mathbf{y}^{\prime}(t)\right\rangle\right]^{\prime} & =2\left[\left\langle\mathbf{y}(t),\left(p(t) \mathbf{y}^{\prime}(t)\right)^{\prime}\right\rangle+p(t)\left\|\mathbf{y}^{\prime}(t)\right\|^{2}\right] \\
& =2\left[\left\langle\mathbf{y}(t), p(t) q(t) \mathbf{f}\left(t, \mathbf{y}(t), p(t) \mathbf{y}^{\prime}(t)\right)\right\rangle+p(t)\left\|\mathbf{y}^{\prime}(t)\right\|^{2}\right]
\end{aligned}
\end{align*}
$$

The above identities will be needed in the proofs of our main results.

2. Main results

We now present the main results for (1.1) subject to the Dirichlet-Sturm-Liouville boundary conditions (1.2) and (1.3). The following result concerns a priori bounds on solutions to (1.1)-(1.3) when $\alpha / \beta \geq 0$ and $\beta \neq 0$. The case when (1.1) is subject to (2.24), (2.25) is essentially the same and is omitted due to space constraints.

Theorem 2.1. Let $\mathbf{f} \in C\left([0, T] \times \mathbb{R}^{2 n} ; \mathbb{R}^{n}\right)$. Let $\alpha / \beta \geq 0(\beta \neq 0)$, (1.4), (1.5) hold and let

$$
\begin{equation*}
K_{1}:=\int_{0}^{T} \frac{d s}{p(s)}<\infty, \quad K_{2}:=\int_{0}^{T} p(s) q(s) d s<\infty \tag{2.8}
\end{equation*}
$$

with $p^{2} q \leq 1$ on $[0, T]$. If there exist non-negative constants V, W such that

$$
\begin{equation*}
\|\mathbf{f}(t, \mathbf{u}, \mathbf{v})\| \leq 2 V\left(\langle\mathbf{u}, \mathbf{f}(t, \mathbf{u}, \mathbf{v})\rangle+\|\mathbf{v}\|^{2}\right)+W, \quad \text { for all }(t, \mathbf{u}, \mathbf{v}) \in[0, T] \times \mathbb{R}^{2 n} \tag{2.9}
\end{equation*}
$$

then all solutions $\mathbf{y}=\mathbf{y}(t)$ to the singular $B V P(1.1)-(1.3)$ satisfy

$$
\begin{align*}
& \max _{t \in[0, T]}\|\mathbf{y}(t)\| \leq R:=\|\mathbf{d}\|+A_{1}+V\|\mathbf{d}\|^{2}+V K_{1}^{2}\|\mathbf{c}\|^{2} /\left[\beta\left(\beta+2 K_{1} \alpha\right)\right]+K_{1} K_{2} W \tag{2.10}\\
& \text { where } A_{1}:=K_{1} \frac{\|\mathbf{c}\|+|\alpha|\left(\|\mathbf{d}\|+V\|\mathbf{d}\|^{2}+V K_{1}^{2}\|\mathbf{c}\|^{2} /\left[\beta\left(\beta+2 K_{1} \alpha\right)\right]+K_{1} K_{2} W\right)}{\left|\alpha \int_{0}^{T} d s / p(s)+\beta\right|} \tag{2.11}
\end{align*}
$$

If, in addition,

$$
\begin{equation*}
2 V\left[\|\mathbf{d}\|+A_{1}+V\|\mathbf{d}\|^{2}+V K_{1}^{2}\|\mathbf{c}\|^{2} /\left[\beta\left(\beta+2 K_{1} \alpha\right)\right]+K_{1} K_{2} W\right]<1 \tag{2.12}
\end{equation*}
$$

then

$$
\sup _{t \in(0, T)}\left\|p(t) \mathbf{y}^{\prime}(t)\right\| \leq \frac{\|\mathbf{c}\|+R(|\alpha|+\|\mathbf{c}\|)+K_{2} W|\beta|}{|\beta|\left(1-2 V\left[\|\mathbf{d}\|+A_{1}+V\|\mathbf{d}\|^{2}+V \tau\|\mathbf{c}\|^{2}+K_{1} K_{2} W\right]\right)} .
$$

Proof. Let $\mathbf{y}=\mathbf{y}(t)$ be any solution to the singular BVP (1.1)-(1.3). The BVP is equivalent to the following integral equation [4, p. 14, O'Regan]

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{d}-\mathbf{A} \int_{t}^{T} \frac{d s}{p(s)}-\int_{t}^{T} \frac{1}{p(s)} \int_{0}^{s} p(x) q(x) \mathbf{f}\left(x, \mathbf{y}(x), p(x) \mathbf{y}^{\prime}(x)\right) d x d s, \quad t \in[0, T] \tag{2.13}
\end{equation*}
$$

where

$$
\mathbf{A}:=\frac{\mathbf{c}+\alpha\left(\mathbf{d}-\int_{0}^{T} \frac{1}{p(s)} \int_{0}^{s} p(x) q(x) \mathbf{f}\left(x, \mathbf{y}(x), p(x) \mathbf{y}^{\prime}(x)\right) d x d s\right)}{\alpha \int_{0}^{T} \frac{d s}{p(s)}+\beta}
$$

https://daneshyari.com/en/article/1707999

Download Persian Version:
https://daneshyari.com/article/1707999

Daneshyari.com

[^0]: * Corresponding author. Tel.: +61 0293857111.

 E-mail addresses: nicholas@unsw.edu.au (N. Fewster-Young), cct@maths.unsw.edu.au, cct@unsw.edu.au (C.C. Tisdell).

