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a b s t r a c t

This article examines two-point boundary value problems (BVPs) for second-order, singu-
lar ordinary differential equations where the right-hand-side of the differential equation
may depend on the derivative of the solution. We introduce a method to obtain a priori
bounds on all potential solutions, including their ‘‘derivatives’’, to the singular BVP under
consideration. The approach is based on the application of differential inequalities of sin-
gular type. The ideas are then applied to yield new existence results for solutions.

Crown Copyright© 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

This work furnishes a priori bounds on the solutions to the singular, nonlinear differential equation

1
p
(py′)′ = qf(t, y, py′), 0 < t < T (1.1)

when subjected to variations of the following boundary conditions

−αy(0) + β lim
t→0+

p(t)y′(t) = c, (β ≠ 0); (1.2)

y(T ) = d. (1.3)

The above boundary conditions feature oneDirichlet condition at one end-point and one Sturm–Liouville condition at the
other end-point of the interval of interest. Scalar-valued versions of (1.1)–(1.3) have been considered in papers by Pandey
& Verma [1–3] by applying the method of upper and lower solutions to obtain existence of solutions. Alternatively, our
approach is based on the construction and application of differential inequalities and Lyapunov-type functions for systems
to obtain a priori bounds on solutions. The results are then applied to yield novel existence results for solutions to the singular
boundary value problem (BVP) (1.1) with (1.2), (1.3)

The study of singular BVPs of type (1.1)–(1.3) is partiallymotivated by their occurrence in themodeling of various physical
phenomena, for example, see [4, O’Regan, Ch. 1].

The recent paper by Fewster-Young & Tisdell [5] analyzed the derivative independent case of (1.1), that is, when
f = f(t, y). In comparison, the singular BVP associated with the derivative dependent case (1.1) is more challenging, as
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additional bounds on py′ are required in order to apply topological techniques. This work supplies these a priori bounds on
py′, advancing the current state of knowledge in the process.

In (1.1), f ∈ C([0, T ] × R2n
; Rn), that is, f is a continuous function from [0, T ] × R2n to Rn. In addition

p ∈ C([0, T ]; R) ∩ C1((0, T ); R) with p > 0 on (0, T ) (1.4)
q ∈ C((0, T ); R) with q > 0 on (0, T ). (1.5)

By a solution to (1.1) we mean a function y ∈ C([0, T ]; Rn) ∩ C2((0, T ); Rn) with py′
∈ C([0, T ]; Rn) and y satisfying

(1.1) on (0, T ).
Our new ideas naturally complement recent advances in the literature, for example, [6,5,7–9] who applied different

methods from nonlinear analysis, including fixed-point theory in cones; and Leray–Schauder degree.
For u ∈ Rn we define ∥u∥ via ∥u∥

2
= ⟨u,u⟩, where ⟨·, ·⟩ is the usual Euclidean dot product of two vectors in Rn.

The Lyapunov-type functions used to form a priori bounds on solutions to (1.1)–(1.3) are motivated by the work of:
Fewster-Young & Tisdell [5], Hartman [10,11, p. 433]; Mawhin [12]; Rudd and Tisdell [13]; and Erbe, Tisdell andWong [14].
The type of Lyapunov function used here is the function r(t) := ∥y(t)∥2 where y = y(t) is a solution to (1.1). For all t ∈ (0, T )
we have:

r ′(t) = 2⟨y(t), y′(t)⟩; and (1.6)

(p(t)r ′(t))′ = 2

⟨y(t), p(t)y′(t)⟩

′
= 2


⟨y(t), (p(t)y′(t))′⟩ + p(t)∥y′(t)∥2

= 2

⟨y(t), p(t)q(t)f(t, y(t), p(t)y′(t))⟩ + p(t)∥y′(t)∥2 . (1.7)

The above identities will be needed in the proofs of our main results.

2. Main results

We now present the main results for (1.1) subject to the Dirichlet–Sturm–Liouville boundary conditions (1.2) and (1.3).
The following result concerns a priori bounds on solutions to (1.1)–(1.3) when α/β ≥ 0 and β ≠ 0. The case when (1.1) is
subject to (2.24), (2.25) is essentially the same and is omitted due to space constraints.

Theorem 2.1. Let f ∈ C([0, T ] × R2n
; Rn). Let α/β ≥ 0 (β ≠ 0), (1.4), (1.5) hold and let

K1 :=

 T

0

ds
p(s)

< ∞, K2 :=

 T

0
p(s)q(s) ds < ∞ (2.8)

with p2q ≤ 1 on [0, T ]. If there exist non-negative constants V , W such that

∥f(t,u, v)∥ ≤ 2V

⟨u, f(t,u, v)⟩ + ∥v∥2

+ W , for all (t,u, v) ∈ [0, T ] × R2n (2.9)

then all solutions y = y(t) to the singular BVP (1.1)–(1.3) satisfy

max
t∈[0,T ]

∥y(t)∥ ≤ R := ∥d∥ + A1 + V∥d∥
2
+ VK 2

1 ∥c∥2/[β(β + 2K1α)] + K1K2W , (2.10)

where A1 := K1
∥c∥ + |α|(∥d∥ + V∥d∥

2
+ VK 2

1 ∥c∥2/[β(β + 2K1α)] + K1K2W )

|α
 T
0 ds/p(s) + β|

. (2.11)

If, in addition,

2V [∥d∥ + A1 + V∥d∥
2
+ VK 2

1 ∥c∥2/[β(β + 2K1α)] + K1K2W ] < 1 (2.12)

then

sup
t∈(0,T )

∥p(t)y′(t)∥ ≤
∥c∥ + R(|α| + ∥c∥) + K2W |β|

|β|(1 − 2V [∥d∥ + A1 + V∥d∥2 + Vτ∥c∥2 + K1K2W ])
.

Proof. Let y = y(t) be any solution to the singular BVP (1.1)–(1.3). The BVP is equivalent to the following integral equa-
tion [4, p. 14, O’Regan]

y(t) = d − A
 T

t

ds
p(s)

−

 T

t

1
p(s)

 s

0
p(x)q(x)f(x, y(x), p(x)y′(x)) dx ds, t ∈ [0, T ] (2.13)

where

A :=

c + α

d −

 T
0

1
p(s)

 s
0 p(x)q(x)f(x, y(x), p(x)y′(x)) dx ds


α

 T
0

ds
p(s) + β

.
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