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a b s t r a c t

A new iterative method for the simultaneous determination of simple zeros of algebraic
polynomials is stated. This method is more efficient compared to the all existing
simultaneousmethods based on fixed point relations. A very high computational efficiency
is obtained using suitable corrections resulting from the Kung–Traub three-step method
of low computational complexity. The presented convergence analysis shows that the
convergence rate of the basic third order method is increased from 3 to 10 using this
special type of corrections and applying 2n additional polynomial evaluations per iteration.
Some computational aspects and numerical examples are given to demonstrate a very fast
convergence and high computational efficiency of the proposed zero-finding method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this paper is to construct an iterative method for the simultaneous determination of simple polynomial roots
with a very high computational efficiency. The proposed method is ranked as the most efficient among existing methods
in the class of simultaneous methods for approximating polynomial roots based on fixed point relations. The presented
iterative formula relies on the fixed point relation of Gargantini–Henrici type [1]. A high computational efficiency is attained
by employing suitable corrections which enable very fast convergence (equal to ten) with minimal computational costs. In
fact, these corrections arise from the Kung–Traub three-point method [2].

2. Accelerated methods

Let f (z) =
n

j=1(z − ζj) be a monic polynomial of degree nwith simple real or complex zeros ζ1, . . . , ζn and let

u(z) =
f (z)
f ′(z)

=


d
dz

log f (z)
−1

=


n

j=1

1
z − ζj

−1

(1)

be Newton’s correction appearing in the quadratically convergent Newton method. To construct an iterative method for
the simultaneous inclusion of polynomial zeros, Gargantini and Henrici [1] started from (1) and derived the following fixed
point relation

ζi = z −


1

u(z)
−


j∈In\{i}

1
z − ζj

−1

(i ∈ In := {1, . . . , n}). (2)
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Let z1, . . . , zn be distinct approximations to the zeros ζ1, . . . , ζn. Setting z = zi and substituting the zeros ζj by some
approximations z∗

j in (2), the iterative method

ẑi = zi −


1

u(zi)
−


j∈In\{i}

1
zi − z∗

j

−1

(i ∈ In) (3)

for the simultaneous determination of all simple zeros of the polynomial f is obtained. The choice z∗

j = zj in (3) gives the
well-known cubically convergent Ehrlich–Aberth method [3,4]

ẑi = zi −


1

u(zi)
−


j∈In\{i}

1
zi − zj

−1

(i ∈ In). (4)

Comparing (2) and (3) it is evident that the better approximations z∗

j give themore accurate approximations ẑi; indeed, if
z∗

j → ζj, then ẑi → ζi. This idea was employed by Nourein in [5] for the construction of the following fourth-order method
by using the Newton approximations z∗

j = zj − u(zj) in (3):

ẑi = zi −


1

u(zi)
−


j∈In\{i}

1
zi − zj + u(zj)

−1

(i ∈ In). (5)

In this paper we will prove that further increase of computational efficiency can be achieved by combining a suitable
three-point method. More details about multipoint methods may be found in [6,7]. In fact, we construct a tenth-order
simultaneous method of the form (3) using 2n additional polynomial evaluations. These additional evaluations provide a
huge increase of the order of convergence from 3 (method (4)) to the incredible 10.

Let f be a function with an isolated zero ζ and let xm be its approximation obtained at the mth iterative step. To achieve
a very fast convergence of the method (3), we will apply a special case of the Kung–Traub family of multipoint methods of
arbitrary order of convergence [2], given through the following three steps:

ym = xm −
f (xm)

f ′(xm)
= xm − u(xm), vm = ym −

f (xm)f (ym)u(xm)
f (xm) − f (ym)

2 ,

xm+1 = K(xm) := vm −
(ym − vm)f (vm)u(xm)

f (xm) − f (vm)
2 

f (ym) +
f (xm)2

f (ym) − f (vm)


.

(6)

For simplicity, the three-point Kung–Traub iteration (6) is denoted as xm+1 = K(xm).
Now we can construct a new simultaneous method taking the Kung–Traub approximations z∗

j = K(zj) (given by (6))
in (3). If z(0)

1 , . . . , z(0)
n are initial approximations to the polynomial zeros ζ1, . . . , ζn, then the new simultaneous method is

defined by the iterative formula

z(m+1)
i = z(m)

i −


1

u(z(m)
i )

−


j∈In\{i}

1

z(m)
i − K


z(m)
j

−1

, (i ∈ In, m = 0, 1, . . .). (7)

Remark 1. To decrease the total computational cost, before executing an iteration step it is first necessary to calculate all
entries K


z(m)
j


.

3. Convergence analysis

The following theorem deals with the order of convergence of the simultaneous method (7).

Theorem 1. Assume that initial approximations z(0)
1 , . . . , z(0)

n are sufficiently close to the distinct zeros ζ1, . . . , ζn of the
polynomial f . Then the order of convergence of the simultaneous method (7) is 10.

Proof. For simplicity, we omit the iteration indexm and denote all quantities at the (m + 1)th iteration with the symbol.
Let us introduce the errors εj = zj − ζj, ε̂j = ẑj − ζj, and let

z∗

j = K(zj), λij = zi − K(zj), θi =


j∈In\{i}

K(zj) − ζj

(zi − ζj)λij
.

Then, starting from (7) and using (1) we obtain

ẑi = zi −


1
εi

+


j∈In\{i}

1
zi − ζj

−


j∈In\{i}

1
λij

−1

= zi −
εi

1 − εiθi
,



Download English Version:

https://daneshyari.com/en/article/1708003

Download Persian Version:

https://daneshyari.com/article/1708003

Daneshyari.com

https://daneshyari.com/en/article/1708003
https://daneshyari.com/article/1708003
https://daneshyari.com

