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1. Introduction

In this letter, we consider the following semilinear parabolic problem with a variable source:

U = Au + uP®, XxXeR, t>0,
u(x,t) =0, Xx€082,t>0, (1.1)
ux,0) =up(x) >0, xe 4,

where 2 C R™"(n > 3) is a bounded domain with smooth boundary and uy(x) is the initial value. Moreover, we assume that
the function p(x) : 2 — (1, +00) satisfies

1<p = infp() <p®) <p" :=supp() < +oo.
Xe xeR

Problem (1.1) appears in several branches of applied mathematics, for example, it has been used to model chemical reactions,
heat transfer and population dynamics. For more information, we refer the interested reader to [1,2] and the references
therein.

In [3], the authors proved that there are solutions with blow-up in finite time if and only if p™ > 1. Moreover, they
showed that there are functions p(x) and domains §2 such that all solutions of problem (1.1) blow up in finite time. The
authors in [4] obtained that the solution of problem (1.1) blows up in finite time when the initial energy is positive.

In this letter, we investigate the lower bound of blow-up time to problem (1.1) in a bounded domain £2 C R"(n > 3).

In the next section, we will find lower bounds for the blow-up time when the blow-up occurs.
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2. Alower bound for the blow-up time

In this section we seek the lower bound for the blow-up time T in some appropriate measure. The idea of the proof of

the following theorem is based on the one in [5].

Theorem 2.1. Let u(x, t) be the nonnegative classical solution of problem (1.1) in a bounded domain 2 C R™(n > 3). Moreover,

we assume that the function p(x) satisfies

1<p = infpx) <p®) <p' :=suppk) < +oo.
xeQ xef2

Define
o(t) = / uk dx,
2
where k is a parameter restricted by the condition
k > max{Z(n -2)(pt - 1), 2].
If u(x, t) blows up at finite time T, then T is bounded from below by

/+oo ds
@0 ki + kz%‘ 32 2’

where kq and k, are positive constants which will be determined later.

Proof. First we compute

do
— = k/ uk Ty, dx
dt 5

= k/ U (Au+ uP®) dx
2

_4(k—1)/‘ ‘Vu% 2
k I

For each t > 0, we divide £2 into two sets,

dx + Icf uP@Hk=1 gy
2

2y =1{xe2:ukxt) <1}, ey =xe: uxt)>1}

Now, we have

/ up(x)+k—l dx = / up(x)+k—1 dx+f up(x)+k—l dx
2 2(<1y 21
< / uP k=1 dx—l—/ up++k71 dx
(<1 21

< / up k=1 dx—i—/ up++k71 dx.
2 Q

Substituting (2.3) into (2.2), we obtain

do 4(k—1)/ (2
- = ‘V 2
dt

By using (2.1), we can apply the Hélder and Young inequalities to get

my
_ k(2n—3)
/ b el dx < 2™ / u 22 dx
o Q

k(2n—3)
m|2| +my | u20-2 dx,
2

IA

dx + k/ uP e gy 4 k/ AR
2 2

(2.1)

(2.2)

(2.4)

(2.5)
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