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a b s t r a c t

The numerical solution of the special integral form of two-dimensional continuity and
unsteady Navier–Stokes equations is used to investigate vortex states of a horizontal
cylinder undergoing forced oscillations in free surface water wave. This study aims to
examine the consequence of degree of submergence of the cylinder beneath free surface at
Froude number 0.4. Calculations are carried out for a single set of oscillation parameters at
a Reynolds number of R = 200. Two new locked-on states of vortex formation are observed
in the near wake region. The emphasis is on the transition between these states, which is
characterized in terms of the lift force on the cylinder and the instantaneous patterns of
vortex structures and pressure contours in the near wake.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The interaction of a free surface wave motion with moving cylindrical bodies has been principally the subject of
experimental studies. Computations of nonlinear viscous free surface problems including cylindrical bodies are relatively
few [1,2]. In these studies the free surface effects on the near wake development and vortex formation modes are
investigated. Neither fluid force descriptions nor the link between fluid forces and the changes inwake structure is discussed.
In this paper, a viscous incompressible two-fluidmodelwith a circular cylinder is investigated numerically. The present two-
fluid model involves the fluids in the regions Ω1 and Ω2 with densities ρ1, ρ2 and dynamic viscosities µ1, µ2 entering into
the domain with uniform velocity U at the inlet and leaving through the outlet boundary. The circular cylinder of radius d is
submerged in the fluid region Ω2 at the distance h∗ below the undisturbed free surface. Initially, an infinitely long circular
cylinder whose axis coincides with the z-axis is at rest, and then, at time t = 0, the cylinder starts to perform streamwise
oscillations about the x-axis. The imposed oscillatory cylinder displacement is assigned x(t) = A cos(2π ft). The aims of the
present investigation are (i) to characterize the possible states of the wake and (ii) to establish a link between the changes
in wake dynamics of the cylinder and lift force at three different submergence depths.

The relevant dimensionless parameters are the Reynolds number R2 = Ud/ν2 (R1 = Ud/ν1); the forcing amplitude of the
cylinder oscillations, A = A∗/d; the frequency ratio, f /f0, with f = df ∗/U and f0 = df ∗

0 /U being the dimensionless forcing
frequency of the cylinder oscillation and the natural vortex shedding frequency for the corresponding stationary cylinder
case in an unbounded medium; the cylinder submergence depth, h = h∗/d; and the Froude number, Fr = U/

√
dg∗. Here,

ν1 = µ1/ρ1, ν2 = µ2/ρ2 are the kinematic viscosities of the fluids in Ω1 and Ω1, respectively, f ∗ is the dimensional forcing
frequency of cylinder oscillation, f ∗

0 is the dimensional natural vortex shedding frequency of a stationary cylinder, g∗ is
the acceleration due to gravity, g⃗∗

= (0, g∗, 0), t∗ = td/U is the dimensional time, and t is the dimensionless time. The
dimensionless fluid pressure, p, is defined by p/ε = p∗/ρ2U2, where ε = ρ1/ρ2 when x⃗ ∈ Ω1, and ε = 1 when x⃗ ∈ Ω2.
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2. Numerical solution and validation summary

The special integral form of two-dimensional continuity and unsteady Navier–Stokes equations are solved in their
primitive variables’ formulation using an existing finite volume scheme. Detailed features of the numerical method and
systematic validations have been outlined in [2], and only a brief description of points of direct relevance to the computations
will be provided here; further details of the implementation and validations can be found in [2]. The governing equations
are the two-dimensional continuity and the Navier–Stokes equations (when a solid body is present) given by

dV
dt

+


A
(u⃗ · n⃗) dS = 0, (1)

d
dt


V
u⃗ dV +


A
(n⃗ · u⃗)u⃗ dS = −

1
ε


A∪I

pn⃗ dS +
1
R


A∪I

n⃗ · ∇u⃗ dS +


V
F⃗ dV (2)

where V and A are the fractional volume and area, respectively, open to flow within the computational cell, V ; I is the
length of the fluid–body interface open to flow; u⃗ is the dimensionless velocity vector, where u⃗ = (u, v, 0); n⃗ is the outward
unit normal vector; and S is the control volume boundary. These dimensionless quantities are defined in terms of their
dimensional counterparts: x = x∗/d, y = y∗/d, u = u∗/U, v = v∗/U; V = V ∗/d2, S = S∗/d, V = V∗/d2, A = A∗/d, I =

I∗/d. The external force, F⃗ = (−a1, 1/Fr2 − a2, 0), is due to the dimensionless gravity force, g⃗ = (0, 1/Fr2, 0), and the
dimensionless acceleration of the non-inertial frame of reference, (−a1, −a2, 0). The boundary conditions are no-slip of the
fluid on the cylinder surface, u = 0, v = 0; the uniform stream at the inflow, u = U − v1, v = −v2; and the free slip
conditions at the top and bottom boundaries of the computational domain, ∂u/∂x = 0, v = −v2. The well-posed open
boundary conditions, 1

R∂u/∂x + h̄/Fr2 = p, ∂v/∂x = 0, are enforced at the outflow boundary. Here, h̄ is the height of the
fluid at the outflow boundary. The uniform flow is used as the initial condition. It is assumed that at time t = 0, the free
surface is undisturbed.

Finite volume discretization of the governing equations is performed based on the aggregated-fluid approach, using a
single set of Eqs. (1)–(2) in the computational domain,Ω = Ω1∪Ω2. The values of fluid properties are set to ρ1/ρ2 = 1/100
and µ1/µ2 = 1/100 (or ν1/ν2 = 1) following the work of Reichl et al. [1]. The Reynolds numbers in the fluid regions
Ω1 and Ω2 are the same (R ≡ R1 = R2) which are varied by altering the viscosity µ (or ν). The main computational
difficulty is solving the governing equations in an inertial frame of reference which results in pressure spikes. Professor
Arthur E.P. Veldman’s group at University of Groningen attempted to overcome this difficulty unsuccessfully for more than
a decade (see e.g., [3]). In the present study, the computational difficulty is eliminated by employing a non-inertial frame of
reference. The free surface interface is discretized with the volume-of-fluid method [4]. Its advection in time is performed
based on the strictly mass conserving volume-of-fluid advection method for two-dimensional incompressible flows [5]. For
the moving fluid–body interface the fractional area/volume obstacle representation method [6] and the cut cell method [7]
are employed. A second-order accurate central-difference scheme is used to discretize the governing equations in space in
conjunction with a first-order explicit forward Euler scheme to advance the numerical solution in time.

The computational grid geometry is defined with respect to the mean position of the cylinder and by specifying the
locations of inflow and outflow boundaries, L1 and L2, along the x-axis and the location of the top and bottom boundaries,
L3, along the y-axis. The numerical simulations are carried out using the computational code which was developed by
S. Kocabiyik’s research group at Memorial University. Code verification and validation testing were conducted by L.A.
Mironova and C. Bozkaya during their doctoral and postdoctoral studies atMemorial University, respectively. The numerical
grid, L1 = 20, L2 = 30, L3 = 40, with 60 cells per cylinder diameter and 1t = 0.005 are found to be satisfactory and are
checked carefully. Tests are conducted in the absence of a free surface for a stationary cylinder case atR = 200. The calculated
value of natural shedding frequency, f0 = 0.198, is within 0.1% of the accepted value of 0.197 [8]. The predicted values of
the mean drag coefficient, CD = 1.3399, and the maximum lift coefficient, CL,max = 0.70, are in good agreement with the
previous numerical results of De Palma et al. [9] (CD = 1.34, CL,max = 0.70). The x- and y-components of the dimensionless
force, F⃗ = 2F⃗∗/(ρdU2), exerted by the cylinder on the fluid are the dimensionless drag and lift force coefficients (CD, CL):

CD =

 2π

0
p cos θ dθ +

1
R

 2π

0

∂ur
∂ n⃗

dθ, CL =

 2π

0
p sin θ dθ +

1
R

 2π

0

∂v

∂ n⃗
dθ (3)

where n⃗ = (cos(θ), sin(θ), 0) is the outward unit normal to the cylinder boundary. In Table 1, the effects of h on the
predicted values of Fr|L, f̄0/f0, andu at R = 180, Fr = 0.4, h = 0.22, 0.55, 0.70 are compared with the numerical results
of Reichl et al. [1]. The u-velocity is averaged based on the free surface height, h|L, in the region directly above the cylinder.
The local Froude number, Fr|L, is calculated using Fr|L = ū/

√
(gh|L). Here ū is the maximum u-velocity in the region directly

above the cylinder at the timewhen the lift coefficient reaches itsmaximum. Thepredicted results are in excellent agreement
with the numerical results of Reichl et al. [1].

3. Results and conclusions

The numerical simulations are carried out in the presence of a free surface at h = 0.25, 0.5, 0.75 and Fr = 0.4 for the
case of R = 200 : A = 0.13 and f /f0 = 3.75. Small amplitude excitation at f /f0 = 3.75 is chosen outside the fundamental
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