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1. Introduction

In this work, we are concerned with the existence of symmetric positive solutions for the 2n-order boundary value
problems (BVP)

(_1)nu(2n)(t) Zf(t, u(t))’ t S (07 1)! (1 1)
U =u®1)=0, k=0,1,2,...,n—1, :

where n > 2 and f(t, u) may be singular atu = 0,t = 0 (and/or t = 1). Here, a symmetric positive solution u* of (1.1)
means a solution u* of (1.1) satisfying

u*(t) =u*(1—1t), te[0,1], u*(t) >0, t €(0,1).

In recent years, the conditions for the existence and multiplicity of symmetric positive solutions to boundary value
problems have been considered in many papers (see [1-6]). In [3], applying the fixed point theorem, Henderson and
Thompson obtained the conditions for the existence of at least three symmetric positive solutions to the second-order
boundary value problem

y'®)+fy) =0, telo0,1],
y(0) =y(1) =0.

Under the condition that f (¢, u) is non-decreasing with respect to u, by using the monotone iterative technique, Yao [1]
proved that the higher-order boundary value problem (1.1) has N symmetric positive solutions and Luo [2] established a
necessary and sufficient condition for the existence of symmetric positive solutions to the same problem.
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Under the condition that f(t, u) is non-increasing with respect to u, applying the upper and lower solutions method,
Zhao [4,5] obtained the existence of positive solutions for a class of nonlinear singular boundary value problems (1.1).

Motivated by the work mentioned above, under the condition that f (t, u) is non-increasing with respect to u, we, applying
the iterative technique, give a necessary and sufficient condition for the existence of symmetric positive solutions for 2n-order
nonlinear singular boundary value problem (1.1). Unlike for the case where f (¢, u) is non-decreasing with respect to u, we
can only construct one non-monotonic iterative sequence, which has a non-decreasing subsequence and a non-increasing
subsequence.

The main contributions of this work are as follows: (a) the iterative sequence is non-monotonic; (b) the iterative operator
is not completely continuous; (c) the search for the iterative initial element is the key point.

To obtain our results, the following conditions will be assumed in this work:
(A7) f:(0,1) x (0, 400) —> [0, +00) is continuous. For (¢, u) € (0, 1) x (0, +00), f is symmetric with respect to t, i.e.

f satisfies

fA—t,u)=f(,u), te@1). (1.2)

(Ay) For (t,u) € (0,1) x (0, 400), f is non-increasing with respect to u and there exists a constant A € (0, 1) such that
foro € (0, 1],

ft,ou) <o f(t, u). (13)

From (1.3), it is easy to see thatif o € [1, +00), then
f(t,ou) > o7 f(t, u). (1.4)

2. Notation and preliminaries

In this section, we present some material needed in the proof of our main results. Let

s(1—t), 0<s<t<1,

e(t)y =t(1—-1t), tel0,1], G(t’s):{t(l—s), 0<t<s<l.

Obviously forany t, s € [0, 1], we have e(t) = G(t, t) and
e(s)e(t) < G(t,s) < G(t, t) =e(t). (2.2)
Let E be the Banach space C[0, 1], and define
P={ueE:u0) =u(l)=0,u(t) >0fort € (0, 1), u(t) =u(l—t)
and for some constant ¢ € (0, 1), ce(t) < u(t) < ¢ 'e(t) for t € [0, 1]}. (2.3)
By simple computation, we obtain the following Lemma 2.1.

Lemma 2.1. Let v be integrable on (0, 1); then the BVP

(=D () =v(0), te(0,1),
U0y =u®1y=0, k=0,1,2,...,n—1

has a unique solution
u(t) = /] Gn(t, s)v(s)ds,
0
where
Gi(t,s) = /1 G(t, ©)Gi_1(T,s)dt, i=2,...,n,
0

s(1—1t), 0<s<t<1,
Gi(t, ) = G(t,s) = {t(l —5), 0<t<s<l. .

Remark 2.1. Forany t, s € [0, 1], it is easy to prove that
Gun(1—1t,1—5) = Gyul(t,s). (2.5)

Lemma 2.2. If u(t) is a symmetric solution of BVP (1.1), then there exists a constant ¢ € (0, 1) such that
ce(t) <u(t) <c'e(t), tel0,1]. (2.6)

The proof is similar to that of Lemma 2.4 in [2].
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