
Applied Mathematics Letters 26 (2013) 500–505

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Finite-time Euler singularities: A Lagrangian perspective
Tobias Grafke, Rainer Grauer ∗

Theoretische Physik I, Ruhr-Universität Bochum, Universitätsstr. 150, D44780 Bochum, Germany

a r t i c l e i n f o

Article history:
Received 22 November 2012
Received in revised form 5 December 2012
Accepted 5 December 2012

Keywords:
Euler equations
Finite-time singularities
Lagrangian method
Vortex line geometry

a b s t r a c t

We address the question of whether a singularity in a three-dimensional incompressible
inviscid fluid flow can occur in finite time. Analytical considerations and numerical
simulations suggest high-symmetry flows as promising candidates for finite-time blowup.
Utilizing Lagrangian and geometric non-blowup criteria, we present numerical evidence
against the formation of a finite-time singularity for the high-symmetry vortex dodecapole
initial condition. We use data obtained from high-resolution adaptively refined numerical
simulations and inject Lagrangian tracer particles tomonitor geometric properties of vortex
line segments. We then verify the assumptions made in the analytical non-blowup criteria
introduced by Deng et al. [Commun. PDE 31 (2006)] connecting vortex line geometry
(curvature, spreading) to velocity increase, to rule out singular behavior.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The incompressible Euler equations in three dimensions are

∂u
∂t

+ u · ∇u + ∇p = 0, ∇ · u = 0. (1)

The existence and uniqueness of their solutions for all times are unknown. Together with their prominent counterpart, the
incompressible Navier–Stokes equations, these equations have withstood the minds of mathematicians and physicists for
centuries.While the latter are regarded as a ‘‘MillenniumPrize Problem’’ by the ClayMathematics Institute [1], the ignorance
regarding the existence of global solutions is even larger for the inviscid case: the notion of weak solutions, which has been
well established for the Navier–Stokes equations since Leray [2], is unknown for the three-dimensional Euler equations.

As a now classical result, the blowup criterion of Beale et al. [3] (BKM) connects the existence of solutions for the
incompressible Euler equations in three dimensions to the critical accumulation of vorticity. Attempts have beenmade in the
past to construct explicit initial conditions for obtaining numerical evidence for or against a finite-time singularity via BKM,
with surprisingly inconsistent results [4,5]. The major reason for this ambiguity is the critical dependence on extrapolation,
which renders the identification of singular versus near-singular behavior by numerical means next to impossible. Hopes
are high that the situationwill be less vaguewhen considering geometric analysis of the flow [6–9]. In this letter, we present
the application of such geometric criteria to numerical data, to sharpen the distinction between singular and near-singular
flow evolution.

The letter is organized as follows: We first review the notion of geometric non-blowup criteria and state the criteria
considered and their interpretation. We then briefly describe the computational setup and implementation details for our
numerical scheme to obtain adaptively refined data for up to 81923 mesh points. Using Lagrangian tracers and diagnostics
for vortex line geometry, we analyze the simulation data to conclude a non-blowup for the initial conditions considered. A
conclusion and outlook summarize the letter.
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Fig. 1. Left: For the position x(t) of maximum vorticity, choose y(t) such that
 y(t)

x(t) (∇ · ξ) (c(s), t)ds
 = C . For a pointwise singularity, x(t) and y(t)must

collapse in finite time. Right: Lagrangian evolution of a vortex line segment Lt in the context of Theorem2. For every t2 > t1 , choose Lt2 such that it is a subset
of X(Lt1 , t1, t2).

2. Geometric non-blowup criteria

Historically, non-blowup criteria for the incompressible Euler equations commonly focus on global features of the flow,
such as norms of the velocity or the vorticity fields. This comes at the disadvantage of neglecting the structures and physical
mechanisms of the flow evolution. A strategy for overcoming such shortcomings was established by focusing more on
geometrical properties and flow structures (see e.g. [6,7,10,11]), such as vortex tubes or vortex lines.

For the Euler equations, this was introduced by Constantin et al. [6]. They improve the BKM criterion by imposing a
smoothly directed vorticity field and a bound on the velocity. This criterion takes into account the local structure of the
flow and follows the evolution of vortex lines, but the (global) bound on the velocity makes this theorem hard to apply in
simulations. Aweaker restriction on the velocity field is presented by Cordoba and Fefferman [7]. They consider vortex tubes
that are regular in a sense in an O(1) region. With milder assumptions on the surrounding velocity it is shown that the tube
cannot reach zero thickness in finite time. Even though the velocity field is no longer required to be uniformly bounded in
time, the notion of a ‘‘regular tube’’ ofO(1) length is restricting, compared to the experienceswith numerical simulations. The
blowup criteria considered here [8,9] are inspired by these geometric considerations, but still differ in crucial aspects: the
assumptions posed are purely local and restricted to the geometry of a single critical vortex line filament. The assumptions
on the velocity do not, in contrast to those of Constantin et al. [6], impose a uniform bound, but they do allow for a blowup
of the velocity in finite time, strictly connected in its growth rate to the geometrical evolution of the filament. The vortex
line segment itself is not assumed to be of O(1) length (as in [7]) or to be contained in an O(1) region. These aspects in
combination render it a promising theorem for being directly tested by means of numerical simulations.

Common to geometric criteria is the notion of vortex lines, defined as integral curves along the vorticity direction field ξ.
They are transported with the flow, i.e. two points x and y on the same vortex line c(s) stay on the same vortex line
indefinitely. As a simple consequence of the solenoidality of ω and the BKM theorem, one gets:

Deng–Hou–Yu Theorem 1. Let x(t) be a family of points such that for some c0 > 0 it holds that |ω(x(t), t)| > c0Ω(t).
Assume that for all t ∈ [0, T ) there is another point y(t) on the same vortex line as x(t) such that the direction of vorticity
ξ(x, t) = ω(x, t)/|ω(x, t)| along the vortex line c(s) between x(t) and y(t) is well-defined. If we further assume that y(t)

x(t)
(∇ · ξ) (c(s), t)ds

≤ C (2)

for some absolute constant C, and T

0
|ω(y(t), t)|dt < ∞, (3)

then there will be no blowup up to time T .

This criterion can readily be applied to numerical simulations. On the other hand, the same theoremmay be interpreted
in a different way to distinguish between a pointwise blowup and the blowup of a complete vortex line segment, as
sketched in Fig. 1: At each instance in time, identify the point of maximum vorticity as x(t). Now define y(t) such that
|
 y(t)
x(t) (∇ · ξ) (c(s), t)ds| = C for a constant threshold C . If a singularity occurs, then either y(t) approaches x(t) (pointwise

blowup), or, if the distance between x(t) and y(t) stays finite, the complete vortex line segment between x(t) and y(t)
exhibits critical growth.

Results obtained with this method can be further improved by considering the Lagrangian evolution of vortex line
segments Lt in time. The geometric equivalent of the vortex stretching term is the increase in length for a Lagrangian vortex
line segment. It is possible to quantify this stretching and establish a sound connection to the vorticity dynamics of the flow.

Denote with l(t) the length of a vortex line segment Lt at time t and define with ΩL(t) := ∥ω(·, t)∥L∞(Lt ) the maximum
vorticity on the vortex line segment. Furthermore, let M(t) := max(∥∇ · ξ∥L∞(Lt ), ∥κ∥L∞(lt )) be a quantity of vortex line
convergence ∇ · ξ and vortex line curvature κ , and define λ(Lt) := M(t)l(t). The following then holds (compare Fig. 1):
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