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a b s t r a c t

Our concern is to solve the stability problem for a linear integro-differential system with
distributed delay in the off-diagonal terms. Some new necessary and sufficient conditions
are established for the zero solution of the system to be asymptotically stable. The proof of
our main theorem is given by a careful analysis of the locations of roots of the associated
characteristic equation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The stability of the trivial solution of delay differential systems depends on the time delays from the feedback as well as
the parameters describing themodels. Over the past few decades, many articles have been devoted to the study of the delay
effect on the stability. For example, the results for linear autonomous systems can be found in [1–7].

In this paper we are concerned with the stability problem for a linear integro-differential system of the form
x′(t) = −ax(t) − b

 t

t−r
y(s)ds,

y′(t) = −c
 t

t−r
x(s)ds − ay(t),

(1.1)

where a, b and c are real numbers and r is a positive number. It is well known (see, e.g., [8]) that for linear autonomous
differential systems with delay, the asymptotic stability of the trivial solution (i.e., the zero solution) is equivalent to all
solutions having limit zero as t → ∞ which in turn is true if and only if all roots of an associated characteristic equation
have negative real parts.

System (1.1) is a special case of the delay system
x′(t) = −a1x(t) − b1

 t

−∞

K1(t − s)y(s)ds,

y′(t) = −b2

 t

−∞

K2(t − s)x(s)ds − a2y(t),
(1.2)
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where, for j = 1, 2, aj and bj are real numbers and Kj are delay kernels defined and integrable on [0, ∞). System (1.2) appears
as the linearization of population models of Lotka–Volterra type; see [3,4,9,10] and references therein.

When Kj(t − s) = δ(t − s − rj), where δ denotes the delta function and r1 and r2 are positive numbers, system (1.2)
becomes the differential-difference system

x′(t) = −a1x(t) − b1y(t − r1),
y′(t) = −b2x(t − r2) − a2y(t).

(1.3)

Recently, the stability problem for system (1.3) with discrete delay has been solved by Wei and Zhang [7] and the present
authors [6] independently. However, there are very few results on the asymptotic stability of system (1.1) with distributed
delay.

The purpose of this paper is to establish necessary and sufficient conditions for the zero solution of (1.1) to be
asymptotically stable. The following theorem is our main result.

Theorem 1.1. The zero solution of (1.1) is asymptotically stable if and only if any one of the following three conditions holds:

a > 0, bc > 0 and r <
a

√
bc

, (1.4)

a > 0 and bc = 0, (1.5)

a > 0, bc < 0 and r < −
1
ω0

arccos


aω0
√

−bc
+ 1


, (1.6)

where ω0 is the unique negative root of the cubic equation ω3
+ a2ω + 2a

√
−bc = 0 with a > 0 and bc < 0.

Remark 1.1. In the case bc = 0, system (1.1) is reduced to a scalar differential equation x′(t) = −ax(t), and, thus, one can
immediately conclude that condition (1.5) is the necessary and sufficient condition for the asymptotic stability of (1.1) with
bc = 0.

Remark 1.2. Condition (1.4), (1.5), or (1.6) is equivalent to

a > 0 and −


aω0

1 − cosω0r

2

< bc <
a2

r2
,

which is another explicit condition for the asymptotic stability of (1.1).

The rest of this paper is organized as follows. In Section 2, we introduce some auxiliary results on the locations of roots
of transcendental equations which will be used in our proofs. In Section 3, we prove our main theorem.

2. Preliminaries

We consider a transcendental equation

λ + p + q
 0

−r
eλsds = 0, (2.1)

where p and q are real numbers and r is a positive number. Eq. (2.1) is the characteristic equation of a scalar integro-
differential equation

x′(t) = −px(t) − q
 t

t−r
x(s)ds.

The locations of roots of (2.1) have been studied in [2,11,12]. Recently, Hara and Sakata [13] proved the following result
which was conjectured by Funakubo et al. [2].

Theorem A ([2,13]). All roots of (2.1) lie in the left half of the complex plane if and only if any one of the following four conditions
holds:

(i) p > 0, q ≥ 0 and 2q − p2 ≤ 0,

(ii) p ≥ 0, q > 0, 2q − p2 > 0 and r <
1

2q − p2


2π − arccos

p2 − q
q


,

(iii) p > 0, q < 0 and r <

pq
 ,

(iv) p < 0, q > 0, 2q − p2 > 0 and
pq
 < r <

1
2q − p2

arccos
p2 − q

q
.
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