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a b s t r a c t

In this work, we present necessary and sufficient conditions for compactness of the
composition operator on Orlicz–Lorentz spaces and determine upper and lower estimates
for the essential norm of the composition operator on these spaces.
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1. Introduction

An Orlicz function ϕ : [0, ∞) → [0, ∞) is a convex function with ϕ(u) = 0 iff u = 0, ϕ(u) → ∞ as u → ∞ and
limu→b(ϕ)− ϕ(u)
= ϕ(b(ϕ)), where b(ϕ) = sup{u > 0 : ϕ(u) < ∞}; see [1–5]. Let (Ω, Σ, µ) be a σ -finite and complete measure space and
let L◦(µ) denote the linear space of all equivalence classes of Σ-measurable functions on Ω that are identified µ-a.e. LetM◦

be the class of all functions in L◦(µ) that are finite µ a.e.
For f ∈ M◦, the distribution function µf of f on (0, ∞) is defined as (see [6,2])

µf (λ) = µ{x ∈ Ω : |f (x)| > λ},

and the decreasing rearrangement of f on (0, ∞) is defined as

f ∗(t) = inf{λ > 0 : µf (λ) ≤ t} = sup{λ > 0 : µf (λ) > t}.

Let I = [0, a] if a < ∞ and I = [0, a) if a = ∞, where a = µ(Ω). Let w : I → (0, ∞) be a weight function which is
non-increasing and locally integrable on I with respect to the Lebesgue measure.

The Orlicz–Lorentz space Λϕ,w(µ) is defined as

Λϕ,w(µ) = {f ∈ L◦(µ) : ρϕ,w(λf ) < ∞ for some λ > 0},

where

ρϕ,w(λf ) =


I
ϕ(λf ∗(t))w(t)dt.
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The Orlicz–Lorentz space Λϕ,w(µ) is a Banach function space under the norm

∥f ∥ϕw = inf{λ > 0 : ρϕ,w( f /λ) ≤ 1};

see [7,8,1,2].
If w ≡ 1, then Λϕ,w(µ) is the Orlicz space Lϕ(µ) and if ϕ(t) = t , then Λϕw(µ) is the Lorentz space Λw(µ).

The Lorentz spaces Lpq(µ) are defined as

Lpq(µ) = {f ∈ L(µ): ∥f ∥Lpq < ∞},

where

∥f ∥Lpq =




∞

0
(t1/pf ∗(t))qdt/t

1/q
if 1 < p < ∞, 1 ≤ q < ∞,

sup
0<t<∞

t1/pf ∗(t) if 1 < p < ∞, q = ∞.

In the case where 1 < p < ∞ and 1 ≤ q < ∞, the space Lpq(µ) is equal to Λϕ,w(µ) with ϕ(u) = |u|q for all u ∈ R and
w(t) = t(

1
p −1) 1

q for all t ∈ [0, ∞).
We recall that ϕ ∈ ∆2(R) if there exists k > 0 such that ϕ(2x) ≤ kϕ(x) for x ≥ 0. We say that ϕ ∈ ∆2(∞) if there exists

u0 > 0 with ϕ(u0) < ∞ and k > 0 such that ϕ(2u) ≤ kϕ(u) whenever |u| ≥ u0. We say that ϕ ∈ ∆2 whenever ϕ ∈ ∆2(R)
ifµ is nonatomic and infinite and ϕ ∈ ∆2(∞) ifµ is nonatomic and finite. If ϕ∗, the Young conjugate of ϕ, satisfies condition
∆2(R) or ∆2(∞), we write ϕ ∈ ∇2(R) or ϕ ∈ ∇2(∞), respectively.

For details about Orlicz–Lorentz spaces we refer the reader to [6,9,7,8,1,12].
A mapping T : Ω → Ω is said to be measurable if T−1(A) ∈ Σ whenever A ∈ Σ . Ameasurable transformation T : Ω →

Ω is called non-singular if the preimage of every null set under T is a null set. Such a transformation induces a well-defined
composition operator

CT : L◦(µ) → L◦(µ)

defined by

CT f = f ◦ T , for each f ∈ L◦(µ).

In the case where CT maps Λϕ,w(µ) into itself, we call CT a composition operator on Λϕ,w(µ) induced by T .
The study of composition operators on Lorentz spaces and Orlicz spaces was initiated in [10,11], and [5, p. 368]. For

composition operators on Orlicz–Lorentz spaces, see [12]. For a study of composition operators on other spaces, see
[13,10,14,11,12,15–18] and the references therein.

Recall that the essential norm of an operator T is defined as

∥T∥e = inf{∥T − K∥ : K being a compact operator}.

We know that ∥T∥e = 0 if and only if T is compact.
In this work we study the essential norm of composition operators on Orlicz–Lorentz spaces.

2. The essential norm

The following theorem gives a necessary and sufficient condition for the compactness of the composition operators on
Orlicz–Lorentz spaces.

Theorem 2.1. Let ϕ be an Orlicz function. Then CT : Λϕ,w(µ) → Λϕ,w(µ) is a compact operator if and only if for each ε > 0
the set

N = N(h, ε) = {x ∈ Ω : h(x) > ε}

consists of only finitely many atoms, where h(x) = dµ ◦ T−1(x)/dµ(x).

Proof (Necessity). Suppose there exists some ε > 0 such that N(h, ε) either contains a non-atomic measurable subset or
has countably many atoms. Since N(h, ε) ⊂ N(h, δ), if 0 < δ < ε, we can assume that 0 < ε ≤ 1. In both cases, we can find
a sequence {An} of pairwise disjoint measurable subsets of N(h, ε) with 0 < µ(An) < ∞ for each n ∈ N. For each n ∈ N,
define

fn(x) =
χAn(x)

∥χAn∥ϕ,w

.
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