Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Coefficient estimates for a certain subclass of analytic and bi-univalent functions

Qing-Hua Xu^a, Ying-Chun Gui^a, H.M. Srivastava^{b,*}

^a College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
^b Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada

ARTICLE INFO

Article history: Received 14 March 2011 Received in revised form 3 November 2011 Accepted 14 November 2011

Keywords: Analytic functions Univalent functions Bi-univalent functions Taylor–Maclaurin series expansion Coefficient bounds and coefficient estimates Taylor–Maclaurin coefficients

ABSTRACT

In this paper, we introduce and investigate an interesting subclass $\mathcal{H}_{\Sigma}^{h,p}$ of analytic and bi-univalent functions in the open unit disk U. For functions belonging to the class $\mathcal{H}_{\Sigma}^{h,p}$, we obtain estimates on the first two Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$. The results presented in this paper would generalize and improve some recent work of Srivastava et al. [H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188–1192].

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and definitions

Let $\mathbb{R} = (-\infty, \infty)$ be the set of *real* numbers, \mathbb{C} be the set of *complex* numbers and

$$\mathbb{N} := \{1, 2, 3, \ldots\} = \mathbb{N}_0 \setminus \{0\}$$

be the set of *positive* integers. We let A be the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk

$$\mathbb{U} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}.$$

We denote by \mathscr{S} the subclass of the *normalized* analytic function class \mathscr{A} consisting of all functions in \mathscr{A} which are also *univalent* in \mathbb{U} (see, for details, [1,2]; see also some of the recent investigations [3–8], dealing with various interesting subclasses of the analytic function class \mathscr{A} and the univalent function class \mathscr{A}).

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1} , which is defined by

 $f^{-1}(f(z)) = z \quad (z \in \mathbb{U})$

* Corresponding author. Tel.: +1 250 472 5313; fax: +1 250 721 8962.

(1)

E-mail addresses: xuqh@mail.ustc.edu.cn (Q.-H. Xu), guiycsd@yahoo.com.cn (Y.-C. Gui), harimsri@math.uvic.ca (H.M. Srivastava).

^{0893-9659/\$ –} see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2011.11.013

and

$$f^{-1}(f(w)) = w \quad \left(|w| < r_0(f); \ r_0(f) \ge \frac{1}{4} \right).$$

In fact, the inverse function f^{-1} is given by

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

A function $f \in A$ is said to be *bi-univalent* in \mathbb{U} if both f(z) and $f^{-1}(z)$ are univalent in \mathbb{U} . Let Σ denote the class of all bi-univalent functions in \mathbb{U} given by the Taylor–Maclaurin series expansion (1). Examples of functions in the class Σ are

$$\frac{z}{1-z}, \qquad -\log(1-z), \qquad \frac{1}{2} \, \log\left(\frac{1+z}{1-z}\right),$$

and so on. However, the familiar Koebe function is not a member of Σ . Other common examples of functions in \$ such as

$$z - \frac{z^2}{2}$$
 and $\frac{z}{1-z^2}$

are also not members of Σ .

Lewin [9] first investigated the bi-univalent function class Σ and showed that

 $|a_2| < 1.51.$

Subsequently, Brannan and Clunie [10] conjectured that

$$|a_2| \leq \sqrt{2}.$$

Netanyahu [11], on the other hand, showed that

$$\max_{f\in\Sigma}|a_2|=\frac{4}{3}.$$

The coefficient estimate problem for each of the following Taylor-Maclaurin coefficients:

 $|a_n|$ $(n \in \mathbb{N} \setminus \{1, 2\})$

is presumably still an open problem. In [12] (see also [13] and [14]), certain subclasses of the bi-univalent function class Σ were introduced, and non-sharp estimates on the first two coefficients $|a_2|$ and $|a_3|$ were found.

Recently, Srivastava et al. [15] introduced the following subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two coefficients $|a_2|$ and $|a_3|$.

Definition 1 (*See* [15]). A function f(z) given by the Taylor–Maclaurin series expansion (1) is said to be in the class $\mathcal{H}^{\alpha}_{\Sigma}$ (0 < $\alpha \leq 1$) if the following conditions are satisfied:

$$f \in \Sigma$$
 and $\left| \arg(f'(z)) \right| \leq \frac{\alpha \pi}{2}$ $(z \in \mathbb{U}; 0 < \alpha \leq 1)$ (2)

and

$$\left|\arg(g'(w))\right| \leq \frac{\alpha\pi}{2} \quad (w \in \mathbb{U}; \ 0 < \alpha \leq 1), \tag{3}$$

where the function g is given by

$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
(4)

Theorem 1 (See [15]). Let the function f(z) given by (1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}^{\alpha}$ ($0 < \alpha \leq 1$). Then

$$|a_2| \leq \alpha \sqrt{\frac{2}{\alpha+2}} \quad and \quad |a_3| \leq \frac{\alpha(3\alpha+2)}{3}.$$
 (5)

Definition 2 (*See* [15]). A function f(z) given by the Taylor–Maclaurin series expansion (1) is said to be in the class $\mathcal{H}_{\Sigma}^{\beta}$ ($0 \leq \beta < 1$) if the following conditions are satisfied:

$$f \in \Sigma$$
 and $\Re(f'(z)) > \beta$ $(z \in \mathbb{U}; 0 \le \beta < 1)$ (6)

and

$$\Re(g'(w)) > \beta \quad (z \in \mathbb{U}; \ 0 \le \beta < 1), \tag{7}$$

where the function g is defined by (4).

Download English Version:

https://daneshyari.com/en/article/1708524

Download Persian Version:

https://daneshyari.com/article/1708524

Daneshyari.com