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1. Introduction and definitions

Let R = (—o0, 00) be the set of real numbers, C be the set of complex numbers and
N:={1,2,3,...} =Np\ {0}

be the set of positive integers. We let 4 be the class of functions of the form:

f@=z+) a7, (1)

n=2
which are analytic in the open unit disk
U={z:zeC and |z| < 1}.

We denote by 4§ the subclass of the normalized analytic function class 4 consisting of all functions in 4 which are also
univalent in U (see, for details, [1,2]; see also some of the recent investigations [3-8], dealing with various interesting
subclasses of the analytic function class + and the univalent function class ).

It is well known that every function f € § has an inverse f~!, which is defined by

@)=z zeU)
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and
) =w (le < 10(f); ro(f) = %)

In fact, the inverse function f~! is given by
(W) = w— quw? + a5 — a)w® — (505 — 5a,a3 + ag)w* + - - -.

A function f € s is said to be bi-univalent in U if both f(z) and f~!(z) are univalent in U. Let ¥ denote the class of all
bi-univalent functions in U given by the Taylor-Maclaurin series expansion (1). Examples of functions in the class X are

1 1
. —log(1—2), 2log< “),

1—-z 1—-z

and so on. However, the familiar Koebe function is not a member of X'. Other common examples of functions in § such as
2
z
z— — and
2 1—22
are also not members of X.
Lewin [9] first investigated the bi-univalent function class X~ and showed that

las| < 1.51.
Subsequently, Brannan and Clunie [ 10] conjectured that
la| < V2.

Netanyahu [11], on the other hand, showed that

4
max |ay| = —.
fex 3

The coefficient estimate problem for each of the following Taylor-Maclaurin coefficients:
lan]  (n € N\{1,2})

is presumably still an open problem. In [12] (see also [13] and [14]), certain subclasses of the bi-univalent function class X
were introduced, and non-sharp estimates on the first two coefficients |a;| and |as| were found.

Recently, Srivastava et al. [15] introduced the following subclasses of the bi-univalent function class X' and obtained
non-sharp estimates on the first two coefficients |a;| and |as|.

Definition 1 (See [15]). A function f(z) given by the Taylor-Maclaurin series expansion (1) is said to be in the class
H$ (0 < o £ 1) if the following conditions are satisfied:

fer and farg(f@)| <5 @eUio<asD 2)
and
(6 %/%
|arg(g'(w))] < - Weli0<as), (3)
where the function g is given by

g(w) = w — aw* + (245 — az)w’ — (5a; — 5a,a3 + ay)w* + - - - (4)

Theorem 1 (See [15]). Let the function f (z) given by (1) be in the bi-univalent function class #% (0 < a < 1). Then

2 oa(Ba +2)
a] < —— and J|as| £ ——. 5
Izl,ot,lole2 las| = 3 (5)

Definition 2 (See [15]). A function f(z) given by the Taylor-Maclaurin series expansion (1) is said to be in the class
J(’g (0 £ B < 1) if the following conditions are satisfied:

feX and R(f'@)>B ZeU;0<B<1) (6)
and

RE'w)>p eU; 0B <1), (7)
where the function g is defined by (4).
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