

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On the (s, t)-Pell and (s, t)-Pell-Lucas sequences and their matrix representations

Hasan Huseyin Gulec*, Necati Taskara

Selcuk University, Science Faculty, Department of Mathematics, 42075, Campus, Konya, Turkey

ARTICLE INFO

Article history: Received 6 October 2011 Accepted 18 January 2012

Keywords: Pell numbers Pell–Lucas numbers Matrix representations

ABSTRACT

In this paper, we first give new generalizations for (s,t)-Pell $\{p_n(s,t)\}_{n\in\mathbb{N}}$ and (s,t)-Pell Lucas $\{q_n(s,t)\}_{n\in\mathbb{N}}$ sequences for Pell and Pell-Lucas numbers. Considering these sequences, we define the matrix sequences which have elements of $\{p_n(s,t)\}_{n\in\mathbb{N}}$ and $\{q_n(s,t)\}_{n\in\mathbb{N}}$. Then we investigate their properties.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fibonacci, Lucas, Pell, and Pell–Lucas sequences have been discussed in many articles and books (see [1–4]). For n>1, the well-known Fibonacci $\{F_n\}$, Lucas $\{L_n\}$, Pell $\{p_n\}$, and Pell–Lucas $\{q_n\}$ sequences are defined as $F_n=F_{n-1}+F_{n-2}$, $L_n=L_{n-1}+L_{n-2}$, $p_n=2p_{n-1}+p_{n-2}$, and $q_n=2q_{n-1}+q_{n-2}$, where $F_0=0$, $F_1=1$, $L_0=2$, $L_1=1$, $p_0=0$, $p_1=1$, and $q_0=2$, $q_1=2$. The closed-form expressions for the Fibonacci and Lucas numbers are $F_n=\frac{\alpha^n-\beta^n}{\alpha-\beta}$ and $L_n=\alpha^n+\beta^n$, where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Also, for $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$, the Pell number and Pell–Lucas numbers are $\beta=1-\frac{\alpha^n-\beta^n}{\alpha-\beta}$ and $\beta=1-\frac{\alpha^n-\beta^n}{\alpha-\beta}$

In [6], Kılıç gave the definition of generalized Pell (p, i)-numbers and then presented their generating matrix. He obtained relationships between the generalized Pell (p, i)-numbers and their sums and permanents of certain matrices. Also, he derived the generalized Binet formulas, sums, combinatorial representations. In [7,8], the authors defined a new matrix generalization of the Fibonacci and Lucas numbers, and using essentially a matrix approach they showed properties of these matrix sequences.

2. The (s, t)-Pell, (s, t)-Pell-Lucas sequences and their matrix sequences

In this section, we give definitions of the (s, t)-Pell and (s, t)-Pell-Lucas sequences and (s, t)-Pell and (s, t)-Pell-Lucas matrix sequences. We also investigate their properties.

Definition 1. For any real numbers s, t and $n \ge 2$, let $s^2 + t > 0$, s > 0 and $t \ne 0$. Then the (s, t)-Pell sequence $\{p_n(s, t)\}_{n \in \mathbb{N}}$ and the (s, t)-Pell-Lucas sequence $\{q_n(s, t)\}_{n \in \mathbb{N}}$ are defined respectively by

$$p_n(s,t) = 2sp_{n-1}(s,t) + tp_{n-2}(s,t), \tag{1}$$

$$q_n(s,t) = 2sq_{n-1}(s,t) + tq_{n-2}(s,t), \tag{2}$$

with initial conditions $p_0(s, t) = 0$, $p_1(s, t) = 1$ and $q_0(s, t) = 2$, $q_1(s, t) = 2s$.

E-mail addresses: hhgulec@selcuk.edu.tr (H.H. Gulec), ntaskara@selcuk.edu.tr (N. Taskara).

^{*} Corresponding author.

Thus one can obtain the characteristic equation of (1) and (2) in the form $x^2 = 2sx + t$; then the roots of the characteristic equation of (1) and (2) are $x_1 = s + \sqrt{s^2 + t}$ and $x_2 = s - \sqrt{s^2 + t}$. Note that $x_1 + x_2 = 2s$, $x_1 - x_2 = 2\sqrt{s^2 + t}$ and $x_1 x_2 = -t$. For some special values of s and t in (1), it is obvious that the following results hold.

- If $s = \frac{1}{2}$, t = 1, the classic Fibonacci sequence is obtained.
- If $s = \tilde{t} = 1$, the classic Pell sequence is obtained.
- If $s = \frac{1}{2}$, t = 2, the classic Jacobsthal sequence is obtained.
- If $s = \frac{3}{2}$, t = -2, the Mersenne sequence is obtained.

Also, for some special values of s and t in (2), it is obvious that the following results hold.

- If $s = \frac{1}{2}$, t = 1, the classic Lucas sequence is obtained.
- If $s = \tilde{t} = 1$, the classic Pell-Lucas sequence is obtained.
- If $s = \frac{1}{2}$, t = 2, the classic Jacobsthal–Lucas sequence is obtained.
- If $s = \frac{3}{2}$, t = -2, the Fermat sequence is obtained.

Let us consider the following proposition, which will be needed for the results in this section. In fact, by this proposition, there will be given a relationship between the sequences $\{p_n(s,t)\}_{n\in\mathbb{N}}$ and $\{q_n(s,t)\}_{n\in\mathbb{N}}$.

Proposition 2. For $n \ge 0$, we have

$$q_n(s,t) = 2sp_n(s,t) + 2tp_{n-1}(s,t). \tag{3}$$

Proof. To prove the existence of this equality, we need to consider the sequence given in (2) with its initial conditions. If we consider the initial condition $q_0(s,t)=2$, then the expression can be written as

$$q_0(s,t) = 2 = (2s) 0 + (2t) \frac{1}{t}$$

If we apply same idea to the other condition $q_1(s, t) = 2s$, then we have

$$q_1(s,t) = 2s = (2s) 1 + (2t) 0.$$

In fact, these rewritten conditions contain the initial conditions $p_{-1}(s,t)$, $p_0(s,t)$ and $p_1(s,t)$ of the (s,t)-Pell sequence. Therefore, by replacing these conditions by these new $q_0(s, t)$ and $q_1(s, t)$, we obtain

$$q_0(s, t) = 2 = (2s) p_0(s, t) + (2t) p_{-1}(s, t),$$

$$q_1(s, t) = 2s = (2s) p_1(s, t) + (2t) p_0(s, t).$$

By keeping the (s, t)-Pell sequence and using same technique, we get

$$(2s) p_2(s,t) + (2t) p_1(s,t),$$

which gives $q_2(s,t)$ in the statement of proposition. So, by iterating process, we obtain the general term in the form $2sp_n(s,t) + 2tp_{n-1}(s,t)$, which implies $q_n(s,t)$, as required. \square

In the following proposition, using the same approximation as in Proposition 2, we will show that there are also some other relations between $\{p_n(s,t)\}_{n\in\mathbb{N}}$ and $\{q_n(s,t)\}_{n\in\mathbb{N}}$ without any proof.

Proposition 3. For $n \ge 0$, we have

- $\begin{array}{l} \bullet \ q_{n+2}^2(s,t) + t q_{n+1}^2(s,t) = 4(s^2+t) p_{2n+3}(s,t), \\ \bullet \ q_{n+2}^2(s,t) + t q_{n+1}^2(s,t) = q_{2n+4}(s,t) + t q_{2n+2}(s,t), \end{array}$
- $q_{2n}(s, t) = p_n(s, t)q_{n+1}(s, t) + tp_{n-1}(s, t)q_n(s, t)$.

Now, considering these sequences, we define the matrix sequences which have elements of (s, t)-Pell and (s, t)-Pell-Lucas sequences.

Definition 4. Let $s, t \in \mathbb{R}, \ s > 0, \ t \neq 0, \ s^2 + t > 0$, and $n \geqslant 2$. The (s, t)-Pell matrix sequence $\{\mathcal{P}_n(s, t)\}_{n \in \mathbb{N}}$ and (s, t)-Pell-Lucas matrix sequence $\{Q_n(s, t)\}_{n \in \mathbb{N}}$ are defined respectively by

$$\mathcal{P}_n(s,t) = 2s\mathcal{P}_{n-1}(s,t) + t\mathcal{P}_{n-2}(s,t),\tag{4}$$

$$Q_n(s,t) = 2sQ_{n-1}(s,t) + tQ_{n-2}(s,t), \tag{5}$$

with initial conditions
$$\mathcal{P}_0(s,t) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\mathcal{P}_1(s,t) = \begin{pmatrix} 2s & 1 \\ t & 0 \end{pmatrix}$, and $\mathcal{Q}_0(s,t) = \begin{pmatrix} 2s & 2 \\ 2t & -2s \end{pmatrix}$, $\mathcal{Q}_1(s,t) = \begin{pmatrix} 4s^2 + 2t & 2s \\ 2st & 2t \end{pmatrix}$.

In the rest of this paper, the (s, t)-Pell and (s, t)-Pell-Lucas matrix sequences will be denoted by \mathcal{P}_n and \mathcal{Q}_n instead of $\mathcal{P}_n(s,t)$ and $\mathcal{Q}_n(s,t)$, respectively.

Download English Version:

https://daneshyari.com/en/article/1708702

Download Persian Version:

https://daneshyari.com/article/1708702

<u>Daneshyari.com</u>