Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Starlikeness criteria for a certain class of analytic functions*

S. Ponnusamy*

Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India

ARTICLE INFO

ABSTRACT

Article history: Received 14 June 2009 Received in revised form 21 October 2010 Accepted 21 October 2010

Keywords: Analytic Univalent Starlike and strongly starlike functions We denote by A, the class of all analytic functions f in the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ with the normalization f(0) = f'(0) - 1 = 0. For a positive number $\lambda > 0$, we denote by $\mathcal{U}_3(\lambda)$ the class of all $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in A$, such that $a_3 - a_2^2 = 0$, and satisfying the condition

$$\left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| < \lambda, \quad z \in \Delta.$$

A function $f \in A$ is said to be in $\Re \Re(\gamma)$ if $|\arg f'(z)| < \pi \gamma/2$. In this paper, we find conditions on λ, α and γ such that $\mathcal{U}_3(\lambda)$ is included in the class of all starlike functions of order α , or the class of all strongly starlike functions of order γ , or $\Re \Re(\gamma)$, respectively. © 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We denote by A the class of all analytic functions f in the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ with the normalization f(0) = f'(0) - 1 = 0. For a positive number $\lambda > 0$, we set

$$\mathcal{U}(\lambda) = \left\{ f \in \mathcal{A} : \left| \left(\frac{z}{f(z)} \right)^2 f'(z) - 1 \right| < \lambda, z \in \Delta \right\}.$$

It is well known that [1] $\mathcal{U}(\lambda) \subseteq \mathfrak{F}$ for $0 < \lambda \leq 1$, where \mathfrak{F} denotes the class of all univalent functions $f \in \mathcal{A}$. Several properties of $\mathcal{U}(\lambda)$ together with its generalization have been discussed in detail in recent papers; for example, see [2–5]. A function $f \in \mathcal{A}$ is called starlike if f is univalent and the image $f(\Delta)$ is starlike with respect to the origin. The class of all starlike functions is denoted by \mathfrak{F}^* . It is well known that $f \in \mathcal{A}$ is starlike if and only if $\operatorname{Re}(zf'(z)/f(z)) > 0$. Furthermore, for a constant $\alpha \in [0, 1), f \in \mathcal{A}$ is starlike of order α if $\operatorname{Re}(zf'(z)/f(z)) > \alpha$. We denote the class of all starlike functions of order α by $\mathfrak{F}^*(\alpha)$. For a constant $\gamma \in (0, 1]$, a function $f \in \mathcal{A}$ is called strongly starlike of order γ if $|\operatorname{arg}(zf'(z)/f(z))| < \pi\gamma/2$. We denote by $\mathfrak{F}(\gamma)$ the set of all strongly starlike functions of order γ . As is well known, for $\gamma \in (0, 1)$, each function in $\mathfrak{F}(\gamma)$ is bounded. Note that, $\mathfrak{F}(\gamma) \subset \mathfrak{F}(1) \equiv \mathfrak{F}^*(0) = \mathfrak{F}^*$ for $\gamma \in (0, 1]$. Clearly, $\mathfrak{F}^*(\alpha) \subset \mathfrak{F}^*$ for $\alpha \in [0, 1)$. These classes of functions were investigated by several authors, e.g. Sugawa [6–8].

A well known result of Fekete and Szegö (see [9]) shows that if $\mu \in [0, 1]$, then the inequality $|a_3 - \mu a_2^2| \le 1 + 2 \exp(-2\mu/(1-\mu))$ holds for any $f \in \delta$ of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. In particular, for $\mu = 1$ one has $|a_3 - a_2^2| \le 1$ if $f \in \delta$. Note that the quantity $a_3 - a_2^2$ represents $S_f(0)/6$, where S_f denotes the Schwarzian derivative $(f''/f')' - (f''/f')^2/2$

 $^{^{}m in}$ The results of this paper were presented in 2005 at the CMFT conference in Joensuu, Finland.

^{*} Tel.: +91 44 22574615; fax: +91 44 22576615.

E-mail address: samy@iitm.ac.in.

^{0893-9659/\$ –} see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2010.10.033

of locally univalent functions f in Δ . In the literature, there exists a large number of results about inequalities for $a_3 - \mu a_2^2$ corresponding to various subclasses of δ .

In this paper, we consider the class of functions $f \in \mathcal{U}(\lambda)$ for which $a_3 - a_2^2 = 0$. We call the class of all such functions by $\mathcal{U}_3(\lambda)$. In this paper, we find conditions on λ , α and γ such that $\mathcal{U}_3(\lambda)$ is included in $\mathscr{I}(\alpha)$ or $\mathscr{I}(\gamma)$ or $\mathscr{I}(\gamma)$. Suppose that $f \in \mathcal{U}_3(\lambda)$. Then a simple calculation shows that

$$-z\left(\frac{z}{f(z)}\right)' + \frac{z}{f(z)} = \left(\frac{z}{f(z)}\right)^2 f'(z) = 1 + A_3 z^3 + \dots := 1 + \lambda w(z), \quad w \in \mathcal{B}_3,$$
(1)

where \mathcal{B}_3 denotes the set of all analytic functions w in the unit disc such that w(0) = w'(0) = 0 and |w(z)| < 1 for $z \in \Delta$. From this, we easily have the following representation for z/f(z):

$$\frac{z}{f(z)} - 1 = -a_2 z - \lambda \int_0^1 \frac{w(tz)}{t^2} dt.$$
 (2)

Since $w \in \mathcal{B}_3$, from Schwarz' Lemma it follows that $|w(z)| \le |z|^3$. From (2), we find that

$$\left|\frac{z}{f(z)} - 1\right| \le |z| \left(|a_2| + \frac{\lambda}{2}|z|^2\right), \quad z \in \Delta.$$
(3)

In particular, if a_2 and λ are related by the inequality $|a_2| \le 1 - \lambda/2$, then (3) is equivalent to

$$\left|\frac{f(z)}{z} - \frac{1}{1 - |z|^2 \left(|a_2| + \frac{\lambda}{2}|z|^2\right)^2}\right| \le \frac{|z| \left(|a_2| + \frac{\lambda}{2}|z|^2\right)}{1 - |z|^2 \left(|a_2| + \frac{\lambda}{2}|z|^2\right)^2}.$$
(4)

In particular, if $f \in \mathcal{U}_3(\lambda)$, then we have

$$\operatorname{Re}\left(\frac{f(z)}{z}\right) \geq \frac{1}{1+|z|\left(|a_{2}|+\frac{\lambda}{2}|z|^{2}\right)} > \frac{1}{1+|a_{2}|+\frac{\lambda}{2}}, \quad z \in \Delta.$$

2. Main theorems

Now we state our main results and their corollaries. The proofs of these theorems will be given in Section 3.

Theorem 1. Let $f \in \mathcal{U}_3(\lambda)$, $\gamma \in (0, 1]$, and

$$\lambda_*(\gamma, |a_2|) = \frac{-2(1 + 2\cos(\gamma\pi/2))|a_2| + 2\sin(\gamma\pi/2)\sqrt{5 + 4\cos(\gamma\pi/2) - 4|a_2|^2}}{5 + 4\cos(\gamma\pi/2)}$$

Then $f \in \mathcal{SS}(\gamma)$ for $0 < \lambda \leq \lambda_*(\gamma, |a_2|)$.

For $\gamma = 1$, Theorem 1 implies the following

Corollary 1. If $f \in \mathcal{U}_3(\lambda)$, then $f \in \mathscr{S}^*$ whenever $0 < \lambda \leq \frac{-2|a_2|+2\sqrt{5-4|a_2|^2}}{5}$.

For $a_3 = a_2^2 = 0$, Theorem 1 gives the following

Corollary 2. If $f(z) = z + \sum_{n=4}^{\infty} a_n z^n$ belongs to $\mathcal{U}(\lambda)$ and $\gamma \in (0, 1]$, then $f \in \delta \delta(\gamma)$ whenever $0 < \lambda \le \frac{2 \sin(\gamma \pi/2)}{\sqrt{5+4 \cos(\gamma \pi/2)}}$. Our next result gives condition for functions in $\mathcal{U}_3(\lambda)$ to be starlike of order $\delta(\lambda)$.

Theorem 2. If $f \in \mathcal{U}_3(\lambda)$ and $a = |f''(0)|/2 \le 1$, then $f \in \mathscr{S}^*(\delta)$ whenever $0 < \lambda \le \lambda(\delta, , a)$, where

$$\lambda(\delta, a) = \begin{cases} \frac{2\sqrt{(1-2\delta)(5-4a^2-2\delta)}-2a(1-2\delta)}{5-2\delta} & \text{if } 0 \le \delta < \frac{1+2a}{4+2a}, \\ \frac{2-2\delta(1-a)}{2+\delta} & \text{if } \frac{1+2a}{4+2a} \le \delta < \frac{1}{1+a}. \end{cases}$$

From Theorem 2, one can obtain a number of new results. For example, if $f \in \mathcal{U}_3(\lambda)$ and $a = |f''(0)/2| \le 1$ then $f \in \delta^*(1/2)$ whenever $0 < \lambda \le 2(1 + a)/5$. Moreover, if we choose a = 0 in Theorem 2, we have

Download English Version:

https://daneshyari.com/en/article/1708814

Download Persian Version:

https://daneshyari.com/article/1708814

Daneshyari.com