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a b s t r a c t

Weprove a Noether-type symmetry theorem and aDuBois–Reymond necessary optimality
condition for nabla problems of the calculus of variations on time scales.
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1. Introduction

The theory of time scales was born with the 1989 Ph.D. Thesis of Stefan Hilger, done under supervision of Bernd Aulbach
[1]. The aim was to unify various concepts from the theories of discrete and continuous dynamical systems, and to extend
such theories to more general classes of dynamical systems. The calculus of time scales is nowadays a powerful tool, with
two excellent books dedicated to it [2,3]. For a good introductory survey on time scales we refer the reader to [4].
The calculus of variations is well-studied in the continuous, discrete, and quantum settings (see, e.g., [5–7]). Recently an

important and very active line of research has been unifying and generalizing the known calculus of variations on R,Z, and
qN0 := {qk|k ∈ N0}, q > 1, to an arbitrary time scale T via delta calculus. Progress toward this has been made on the topics
of necessary and sufficient optimality conditions and its applications—see [8–12] and references therein. The goal is not to
simply re-prove existing and well-known theories, but rather to view R,Z, and qN0 as special cases of a single and more
general theory. Doing so reveals richer mathematical structures (cf. [9]), which has great potential for new applications, in
particular in engineering [13] and economics [14,15].
The theory of time scales is, however, not unique. Essentially, two approaches are followed in the literature: one dealing

with the delta calculus (the forward approach) [2]; the other dealing with the nabla calculus (the backward approach)
[3, Chap. 3]. To actually solve problems of the calculus of variations and optimal control it is often more convenient to work
backwards in time, and recently a general theory of the calculus of variations on time scales was introduced via the nabla
operator. Results include: Euler–Lagrange necessary optimality conditions [16], necessary conditions for higher-order nabla
problems [17], and optimality conditions for variational problems subject to isoperimetric constraints [18]. In this note we
develop further the theory by proving two of the most beautiful results of the calculus of variations—the Noether symmetry
theoremand theDuBois–Reymond condition [19]—for nabla variational problems on an arbitrary time scaleT. Ourmain tool
is the recently developed duality technique of Caputo [20], which allows us to obtain nabla results on time scales from the
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delta theory. Caputo’s duality concept is briefly presented in Section 2; in Section 3 our results are formulated and proved;
in Section 4 an illustrative example is given. We end with some words about the originality of our results and the state of
the art (Section 5).

2. Preliminaries

We assume the reader to be familiar with the calculus on time scales [2,3]. Here we just review the main tool used in the
work: duality.
Let T be an arbitrary time scale and let T∗ := {s ∈ R : −s ∈ T}. The new time scale T∗ is called the dual time scale of T.

If σ and ρ denote, respectively, the forward and backward jump operators on T, then we denote by σ̂ and ρ̂ the forward and
backward jump operators of T∗. Similarly, ifµ and ν denote, respectively, the forward and backward graininess function on
T, then µ̂ and ν̂ denote, respectively, the forward and backward graininess function on T∗; if1 (resp. ∇) denotes the delta
(resp. nabla) derivative on T, then 1̂ (resp. ∇̂) will denote the delta (resp. nabla) derivative on T∗.

Definition 2.1. Given a function f : T → R defined on time scale T we define the dual function f ∗ : T∗ → R by
f ∗(s) := f (−s) for all s ∈ T∗.

We recall some basic results concerning the relationship between dual objects. The set of all rd continuous (resp. ld
continuous) functions is denoted by Crd (resp. Cld). Similarly, C1rd (resp. C

1
ld) will denote the set of functions from Crd (resp.

Cld) whose delta (resp. nabla) derivative belongs to Crd (resp. Cld).

Proposition 2.2 ([20]). Let T be a given time scale with a, b ∈ T, a < b, and f : T→ R. Then,
1. (Tκ)∗ = (T∗)κ and (Tκ)∗ = (T∗)κ ;
2. ([a, b])∗ = [−b,−a] and ([a, b]κ)∗ = [−b,−a]κ ⊆ T∗;
3. for all s ∈ T∗, σ̂ (s) = −ρ(−s) = −ρ∗(s) and ρ̂(s) = −σ(−s) = −σ ∗(s);
4. for all s ∈ T∗, ν̂(s) = µ∗(s) and µ̂(s) = ν∗(s);
5. f is rd (resp. ld) continuous if and only if its dual f ∗ : T∗ → R is ld (resp. rd) continuous;
6. if f is delta (resp. nabla) differentiable at t0 ∈ Tκ (resp. at t0 ∈ Tκ ), then f ∗ : T∗ → R is nabla (resp. delta) differentiable at
−t0 ∈ (T∗)κ (resp.−t0 ∈ (T∗)κ ), and

f 1(t0) = −(f ∗)∇̂(−t0) (resp. f ∇(t0) = −(f ∗)1̂(−t0)),

f 1(t0) = −((f ∗)∇̂)∗(t0) (resp. f ∇(t0) = −((f ∗)1̂)∗(t0)),

(f 1)∗(−t0) = −((f ∗)∇̂)(−t0) (resp. (f ∇)∗(−t0) = −(f ∗)1̂(−t0));

7. f belongs to C1rd (resp. C
1
ld) if and only if its dual f

∗
: T∗ → R belongs to C1ld (resp. C

1
rd);

8. if f : [a, b] → R is rd continuous, then∫ b

a
f (t)1t =

∫
−a

−b
f ∗(s)∇̂s;

9. if f : [a, b] → R is ld continuous, then∫ b

a
f (t)∇t =

∫
−a

−b
f ∗(s)1̂s.

Definition 2.3. Given a Lagrangian L : T×Rn×Rn → R, we define the corresponding dual Lagrangian L∗ : T∗×Rn×Rn → R
by L∗(s, x, v) = L(−s, x,−v) for all (s, x, v) ∈ T∗ × Rn × Rn.

As a consequence of Definition 2.3 and Proposition 2.2 we have the following useful lemma:

Lemma 2.4. Given a continuous Lagrangian L : R× Rn × Rn → R one has∫ b

a
L
(
t, yσ (t), y1(t)

)
1t =

∫
−a

−b
L∗
(
s, (y∗)ρ̂(s), (y∗)∇̂(s)

)
∇̂s

for all functions y ∈ C1rd ([a, b],R
n).

Definition 2.5. LetT be a given time scale with at least three points, n ∈ N, and L : R×Rn×Rn → R be of class C1. Suppose
that a, b ∈ T and a < b. We say that q0 ∈ C1rd is a local minimizer for the problem

I[q] =
∫ b

a
L(t, qσ (t), q1(t))1t −→ min

q(a) = qa, q(b) = qb,
(1)
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