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a b s t r a c t

We consider the continuous version of the Vicsek model with noise, proposed as a model
for collective behaviour of individuals with a fixed speed. We rigorously derive the kinetic
mean-field partial differential equation satisfied when the number N of particles tends
to infinity, quantifying the convergence of the law of one particle to the solution of the
PDE. For this we adapt a classical coupling argument to the present case in which both the
particle system and the PDE are defined on a surface rather than on the whole space Rd. As
part of the study we give existence and uniqueness results for both the particle system and
the PDE.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The stochastic Vicsek model [1] arises in the study of collective motion of animals and it is receiving lots of attention
due to the appearance of a phase transition [2,3]. A continuum version and variants of this model have been proposed in
the recent works [4,5]. Our objective is to rigorously derive some continuum partial differential equations analysed in [4]
from the stochastic Vicsek particle model. This was carried out for a family of collective behaviour models in [6] following
the method of [7]. The present models do not fall into this analysis due to the evolution being defined on a surface as we
explain next. In the models considered here, individuals are assumed to move with a fixed cruising speed trying to average
their orientations with other individuals in the swarm in the presence of noise. This orientation mechanism is modelled
by locally averaging in space their relative velocity to other individuals. More precisely, we are interested in the behaviour
of N interacting R2d-valued processes (X i

t , V
i
t )t≥0 with 1 ≤ i ≤ N with constant speed |V i

t |, say unity. We define them as
solutions to the coupled Stratonovich stochastic differential equations

dX i
t = V i

t dt,

dV i
t =

√
2 P(V i

t ) ◦ dBi
t − P(V i

t )


1
N

N−
j=1

K(X i
t − X j

t)(V
i
t − V j

t )


dt. (1)

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere Sd−1 in Rd, i.e.,

P(v) = I −
v ⊗ v

|v|2
.

This stochastic system is considered with independent and commonly distributed initial data (X i
0, V

i
0) ∈ Rd

× Sd−1 with
1 ≤ i ≤ N . The (Bi

t)t≥0 denote N independent standard Brownian motions in Rd. The projection operator ensures that V i
t
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keeps constant norm, equal to 1. The second term in the evolution of V i
t models the tendency of the particle i to have the

same orientation as the other particles, in a way weighted by the interaction kernel K , as in the model proposed by Cucker
and Smale [8]. Let us observe that P(V i

t )V
i
t = 0, so we can drop the corresponding term when writing (1) to recover the

usual formulations as in [4].
We will work with stochastic processes defined on R2d instead of Rd

× Sd−1. We will check later on that solutions of
(1) with initial data in Rd

× Sd−1 remain there for all times. We have written (1) in the Stratonovich sense, since the term
involving noise corresponds to Brownian motion on the sphere Sd−1 as in [9, Section 1.4] and [10, Section V.31].

By symmetry of the initial configuration and of the evolution, all particles have the same distribution. Even though they
are initially independent, correlation builds up in time due to the interaction term. Nevertheless, this interaction term is of
order 1/N , and thus, it seems reasonable that two of these interacting particles (or a fixed number k of them) become less
and less correlated as N gets large (propagation of chaos).

Following [7] we shall show that theN interacting processes (X i
t , V

i
t )t≥0 respectively behave asN → ∞ like the auxiliary

processes (X
i
t , V

i
t)t≥0, solutions to

dX
i
t = V

i
t dt,

dV
i
t =

√
2 P(V

i
t) ◦ dBi

t − P(V
i
t)(H ∗ ft)(X

i
t , V

i
t) dt,

(X
i
0, V

i
0) = (X i

0, V
i
0), ft = law(X

i
t , V

i
t)

(2)

in the Stratonovich sense. Here the Brownian motions (Bi
t)t≥0 are those governing the evolution of the (X i

t , V
i
t )t≥0 and

(H ∗ f )(x, v) =

∫
R2d

K(x − x′) (v − v′) f (x′, v′) dx′ dv′, x, v ∈ Rd.

Note that (2) consists of N equations which can be solved independently of each other. Each of them involves the condition
that ft is the distribution of (X

i
t , V

i
t), thus making it nonlinear. The processes (X

i
t , V

i
t)t≥0 with i ≥ 1 are independent since

the initial conditions and driving Brownian motions are independent.
We will show that these processes defined on R2d are identically distributed, take values in Rd

× Sd−1 if initially so, and
their common law ft at time t , as a measure on Rd

× Sd−1, evolves according to

∂t ft + ω · ∇xft = ∆ωft + ∇ω · (ft(I − ω ⊗ ω)(H ∗ ft)), t > 0, x ∈ Rd, ω ∈ Sd−1. (3)

Now the convolution H ∗ f is over Rd
× Sd−1:

(H ∗ f )(x, ω) =

∫
Rd×Sd−1

K(x − x′) (ω − ω′) f (x′, ω′) dx′ dω′, x ∈ Rd, ω ∈ Sd−1.

Moreover, ∇x stands for the gradient with respect to the position variable x ∈ Rd whereas ∇ω , ∇ω· and ∆ω respectively
stand for the gradient, divergence and Laplace–Beltrami operators with respect to the velocity variable ω ∈ Sd−1.

This equation is proposed in [5] as a continuous version of the original Vicsek model [1], and one of our purposes is to
make this derivation rigorous. The asymptotic behaviour and the appearance of a phase transition in the space-homogeneous
version of (3) (i.e., without the space variable) has been recently studied in [11]. It is also known as theDoi–Onsager equation,
introduced by Doi in [12] as a model for the non-equilibrium Statistical Mechanics of a suspension of polymers in which
their spatial orientation (given by the parameter ω ∈ Sd−1) is taken into account.

The main result of this paper can be summarized as follows.

Theorem 1. Let f0 be a probability measure on Rd
× Sd−1 with finite second moment in x ∈ Rd and let (X i

0, V
i
0) for 1 ≤ i ≤ N

be N independent variables with law f0. Let also K be a Lipschitz and bounded map on Rd. Then,

(i) There exists a pathwise unique global solution to the SDE system (1) with initial data (X i
0, V

i
0) for 1 ≤ i ≤ N; moreover, the

solution is such that all V i
t have norm 1.

(ii) There exists a pathwise unique global solution to the nonlinear SDE (2)with initial datum (X i
0, V

i
0); moreover, the solution is

such that V
i
t has norm 1.

(iii) There exists a unique global weak solution to the nonlinear PDE (3)with initial datum f0. Moreover, it is the law of the solution
to (2).

Solutions to general SDE’s can be built in submanifolds of Rd by means of the Brownian motion of the ambient space as
in [10, Theorem V.34.86] for instance; then one can interpret the generator in terms of the corresponding Laplace–Beltrami
operator. For example, the Brownian motion on a submanifold Σ of Rd is the solution to the SDE

dWt = PΣ (Wt) ◦ dBt

on Rd and with PΣ (w) being the orthogonal projection of Rd onto the tangent space at w to Σ . Here, we give the full
construction and derivation of the evolution of the law as it can be done explicitly in the case of the sphere Sd−1. Let us also
emphasize that we have only partial diffusion since it is a kinetic model.



Download	English	Version:

https://daneshyari.com/en/article/1708882

Download	Persian	Version:

https://daneshyari.com/article/1708882

Daneshyari.com

https://daneshyari.com/en/article/1708882
https://daneshyari.com/article/1708882
https://daneshyari.com/

