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a b s t r a c t

In thiswork the authors present somenew lower andupper bounds for the functions sin x/x
and x/ sinh x, thus improving some inequalities put forward by Klén et al. (2010) in the
paper [2].
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1. Introduction

The well-known Jordan inequality [1] can be stated as follows:
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
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
. (1.1)

During the past few years the classical Jordan inequality has been the focus of studies on trigonometric inequalities and
many refinements have been proved (cf. [1–8]). For a long list of recent papers on this topic see [9].

Very recently Klén et al. [2] have dealt with the Jordan type inequalities for hyperbolic functions and proved the
inequalities
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1
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, x ∈ (0, 1). (1.3)

This work is motivated by these studies and we aim to refine the above inequalities.

2. The main results and proofs

The following l’Hôpital type criterion for monotonicity of the quotient of two functions from [10, Theorem 1.25] plays an
essential role in all the above mentioned studies. For some other applications of this criterion see [10–13].
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Lemma 1 (The Monotone Form of l’Hôpital’s Rule [10]). For −∞ < a < b < ∞, let f , g: [a, b] → R be continuous on [a, b]
and differentiable on (a, b), and let g ′(x) ≠ 0 on (a, b). If f ′(x)/g ′(x) is increasing or decreasing on (a, b), then so are

f (x) − f (a)
g(x) − g(a)

and
f (x) − f (b)
g(x) − g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Now we state the main results and their proofs.

Theorem 1. If x ∈ (0, π/2) and a = (log(π/2))/ log
√
2 ≈ 1.30299, then
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(2.1)

with the best possible constants a and 4/3. �

Proof. Let f (x) = (log(sin x/x))/ log cos(x/2) ≡ f1(x)/f2(x), where f1(x) = log(sin x/x) and f2(x) = log cos(x/2), with
f1(0+) = f2(0+) = 0. By differentiation we have

f ′

1(x)
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2(x)
= 2

sin x − x cos x
x − x cos x

≡ 2
f3(x)
f4(x)

,

where f3(x) = sin x − x cos x and f4(x) = x − x cos x, with f3(0) = f4(0) = 0. Differentiation gives
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,

where f5(x) = 1 − cos x and f6(x) = x sin x, with f5(0) = f6(0) = 0. Then we get
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,

where f7(x) = x and f8(x) = tan x, with f7(0) = f8(0) = 0. By differentiation we have f ′

7(x)/f
′

8(x) = cos2 x, which is clearly
decreasing. By Lemma 1, f (x) is strictly decreasing. Clearly, f (π/2−) = (log(π/2))/ log

√
2 ≡ a ≈ 1.30299. By l’Hôpital

rule, f (0+) = 4/3. The inequality follows from the monotonicity of f . �

In [2, Theorem 3.7], the bounds of cosh xwere given as follows:
1

cos x

2/3

< cosh x <
1

cos x
, x ∈ (0, π/4).

Now we refine the lower bound of cosh x.

Theorem 2. If x ∈ (0, π/4) and a = log cosh(π/4)/ log
√
2 ≈ 0.811133, then
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1
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with the best possible constants a and 1.

Proof. Let f (x) = (log cosh x)/ log(1/ cos x) ≡ f1(x)/f2(x), where f1(x) = log cosh x and f2(x) = log(1/ cos x), with
f1(0) = f2(0) = 0. By differentiation we have
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≡ f3(x).
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≤
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which implies that f3 is decreasing. By Lemma 1, f (x) is decreasing. By l’Hôpital rule, f (0+) = 1, f (π/4−) = log cosh
(π/4)/ log

√
2 ≈ 0.811133 > 2/3. �

Next, we improve the bounds of (1.3).

Theorem 3. If x ∈ (0, 1) and a = log sinh 1/ log cosh 1 ≈ 0.372168, then
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(2.3)

with the best possible constants a and 1/3.
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