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a b s t r a c t

By means of a monotone iterative technique, we establish the existence and uniqueness of
the positive solutions for a class of higher conjugate-type fractional differential equation
with onenonlocal term. In addition, the iterative sequences of solution and error estimation
are also given. In particular, this model comes from economics, financial mathematics and
other applied sciences, since the initial value of the iterative sequence can begin from an
known function, this is simpler and helpful for computation.
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1. Introduction

In this paper, we are concerned with the existence and uniqueness of positive solutions for the following singular
nonlinear (n − 1, 1) conjugate-type fractional differential equation with one nonlocal term

Dα
0+x(t) + f (t, x(t)) = 0, 0 < t < 1, n − 1 < α ≤ n,

x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =

∫ 1

0
x(s)dA(s),

(1.1)

where α ≥ 2,Dα
0+ is the standard Riemann–Liouville derivative, A is a function of bounded variation and

 1
0 u(s)dA(s)

denotes the Riemann–Stieltjes integral of uwith respect to A, dA can be a signed measure.
Since

 1
0 u(s)dA(s) denotes the Riemann–Stieltjes integral in BCs (1.1), this implies the case of BCs (1.1) covers the

multi-point BCs and also integral BCs in a single framework. For a comprehensive study of the case when there is a
Riemann–Stieltjes integral boundary condition at both ends, see [1].

As the boundary value problem in economics, financial mathematics and other applied science has a wide range of
applications, in recent years, there have been many papers investigating the existence and uniqueness of the positive
solution for local or nonlocal boundary value problems of the second or higher order ordinary differential equations, we
refer the readers to [2–9] and the references cited therein. For the case where α is an integer, Du and Zhao [9] investigated
the following multi-point boundary problem

−x′′(t) = f (t, x(t)), 0 < t < 1,

x(0) =

m−2−
i=1

αix(ηi), x(1) = 0. (1.2)
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They assumed f is decreasing in u and obtained the existence of C[0, 1] positive solutions w for (1.2) with the property that
w(t) ≥ m(1 − t) for somem > 0. In a recent paper [10], Webb and Zima studied the problemx′′(t) + k2x = f (t, x(t)), 0 < t < 1,

x(0) = 0, x(1) =

∫ 1

0
x(s)dA(s)

(1.3)

when dA is allowed to be a signed measure, and obtained the existence of multiple positive solutions under suitable
conditions on f (t, x). And then, by applying the monotone iterative technique, Mao et al. [8] established the existence and
uniqueness of the positive solution for singular integral boundary value problem (1.3). When α is a fraction, Goodrich [11]
dealt with a problem similar to (1.1) but with local conditions, by deriving properties of the Green’s function and by using
the well-known Guo–Krasnoselskii’s fixed point theorem, the author established some nice existence results of at least
one positive solution provided that f (t, x) satisfies some growth conditions. Similarly, a significant work is developed by
Goodrich [12] to study another fractional problemof nonlocal-type similar to (1.1) by utilizing different techniques from [11]
and here. Recently, the same problem (1.1) is treated by Wang et al. [13] through cone theoretic techniques, where f (t, x)
can be singular at x = 0. Their techniques are also rather different from the ones presented here.

We have found that until now no result has been established for the existence and uniqueness of positive solutions
for the problem (1.1) of a fractional differential equation when f has singularities at t = 0 and (or) 1. This paper thus
aims to establish the existence and uniqueness of positive solutions for the problem (1.1), moreover we also obtain error
estimates and the convergence rate of positive solutions with the property that there exist M > m > 0 such that
mtα−1

≤ w∗
≤ Mtα−1.

2. Preliminaries and lemmas

For the convenience of the reader, we present here the Riemann–Liouville definitions for the fractional integral and
derivative from fractional calculus which are to be used in the later sections.

Definition 2.1 (See [14]). Let α > 0 with α ∈ R. Suppose that x : [a, ∞) → R. Then the αth Riemann–Liouville fractional
integral is defined to be

D−α
0+ x(t) =

1
Γ (α)

∫ t

a
(t − s)α−1x(s)ds

whenever the right-hand side is defined. Similarly, with α > 0 with α ∈ R, we define the αth Riemann–Liouville fractional
derivative to be

Dα
0+x(t) =

1
Γ (n − α)


d
dt

(n) ∫ t

a
(t − s)n−α−1x(s)ds,

where n ∈ N is the unique positive integer satisfying n − 1 ≤ α < n and t > a.

Proposition 2.1 (See [15,14]). Let α > 0, and f (x) is integrable, then

D−α
0+Dα

0+f (x) = f (x) + c1xα−1
+ c2xα−2

+ · · · + cnxα−n

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Proposition 2.2 (See [15,14]). The equality

Dα
0+D

−α
0+ f (x) = f (x), α > 0

holds for f ∈ L1(a, b).

Lemma 2.1 (See [16]). Given y ∈ L1(0, 1), then the problem
Dα
0+x(t) + y(t) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2)
= 0, x(1) = 0, (2.1)

has the unique solution

x(t) =

∫ 1

0
G(t, s)y(s)ds, (2.2)

where G(t, s) is the Green function of BCs (2.1) and is given by

G(t, s) =
1

Γ (α)


[t(1 − s)]α−1, 0 ≤ t ≤ s ≤ 1,

[t(1 − s)]α−1
− (t − s)α−1, 0 ≤ s ≤ t ≤ 1.

(2.3)
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