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Furthermore, we establish a sharp Jordan’s inequality, and then apply it to improve the
Yang Le inequality.
© 2011 Published by Elsevier Ltd

1. Introduction and preliminaries

The Jordan’s inequality (see [1], p. 33)
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has important applications in many areas of pure and applied mathematics. This simple inequality has motivated a large
number of research papers concerning its new proofs, various generalizations, sharpness and applications (see [2-20] and
the references cited in them). )

The following sharp lower and upper bounds for the function % were proved in [2,6,8,16,19]:
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Recently, Zhu [20] established new sharp lower and upper bounds for the function ** as follows:
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where 0 < x < /2.
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Two analogues of the inequalities (1.2) and (1.3):
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and
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were established (see [3,4]).
In view of the inequalities (1.2)-(1.5), we now introduce the approximations family
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and 6 > 2 is a given real number, and a, b € R are parameters.
The first aim of this work is to determine the values

27071 (—m% 4+ 4+ 40)7 201
a—= . b= )
0 402
which provide the best approximation:
sinx 20707 (=2 + 44 40)g 20! T
T x0(x ,( +4+46) ,0) 0<x<=— (1.8)
P 0 402 2

The second aim of this work is to give a unified sharpness and generalization of the above inequalities. By using the result
obtained, we improve the well-known Yang Le inequality, which is the third aim of this work.
Before stating and proving the main theorems, we first introduce here two lemmas.

Lemma 1. For all integers n > 3 and all real numbers 6 > 2,
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The equality in (1.9) occurs forn = 3and 6 = 2.
Proof. We first show that the inequality (1.9) is true forn = 3,4 and 6 > 2. When n = 3, inequality (1.9) is

4(9 2)2+7(9 2)>0, 6>2
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When n = 4, inequality (1.9) is

34(9 2)2 + o1 0 —-2)+ ! >0, 6>2
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Now we are in a position to prove that the inequality (1.9) is true forn > 5 and 6 > 2. The inequality (1.9) can be written
forn>5and @ > 2 as
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Therefore, in order to prove (1.10) it is sufficient to prove that.
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