

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Sharpness and generalization of Jordan's inequality and its application

Chao-Ping Chen a, Lokenath Debnath b,*

ARTICLE INFO

Article history:
Received 6 April 2011
Received in revised form 8 August 2011
Accepted 27 September 2011

Keywords: Jordan's inequality Yang Le inequality Sharpness Generalization Best bounds

ABSTRACT

Let $\theta \ge 2$ be a given real number, and $a, b \in \mathbb{R}$ be two parameters, and let

$$Q(x; a, b, \theta) = \frac{2}{\pi} + a\left(\pi^{\theta} - (2x)^{\theta}\right) + b\left(\pi^{\theta} - (2x)^{\theta}\right)^{2}.$$

We determine the values

$$a = \frac{2\pi^{-\theta-1}}{\theta}, \qquad b = \frac{\left(-\pi^2 + 4 + 4\theta\right)\pi^{-2\theta-1}}{4\theta^2},$$

which provide the best approximation

$$\frac{\sin x}{x} \approx Q\left(x; \frac{2\pi^{-\theta-1}}{\theta}, \frac{\left(-\pi^2 + 4 + 4\theta\right)\pi^{-2\theta-1}}{4\theta^2}, \theta\right), \quad 0 < x \le \frac{\pi}{2}.$$

Furthermore, we establish a sharp Jordan's inequality, and then apply it to improve the Yang Le inequality.

© 2011 Published by Elsevier Ltd

1. Introduction and preliminaries

The Jordan's inequality (see [1], p. 33)

$$\frac{2}{\pi} \le \frac{\sin x}{x} < 1, \quad 0 < x \le \frac{\pi}{2} \tag{1.1}$$

has important applications in many areas of pure and applied mathematics. This simple inequality has motivated a large number of research papers concerning its new proofs, various generalizations, sharpness and applications (see [2–20] and the references cited in them).

The following sharp lower and upper bounds for the function $\frac{\sin x}{x}$ were proved in [2,6,8,16,19]:

$$\frac{2}{\pi} + \frac{1}{\pi^3} (\pi^2 - 4x^2) \le \frac{\sin x}{x} \le \frac{2}{\pi} + \frac{\pi - 2}{\pi^3} (\pi^2 - 4x^2) \quad 0 < x \le \frac{\pi}{2}.$$
 (1.2)

Recently, Zhu [20] established new sharp lower and upper bounds for the function $\frac{\sin x}{x}$ as follows:

$$\frac{2}{\pi} + \frac{1}{\pi^3} (\pi^2 - 4x^2) + \frac{12 - \pi^2}{16\pi^5} (\pi^2 - 4x^2)^2 \le \frac{\sin x}{x} \le \frac{2}{\pi} + \frac{1}{\pi^3} (\pi^2 - 4x^2) + \frac{\pi - 3}{\pi^5} (\pi^2 - 4x^2)^2 \tag{1.3}$$

where $0 < x \le \pi/2$.

E-mail addresses: chenchaoping@hpu.edu.cn (C.-P. Chen), debnathl@utpa.edu, Debnathl@panam.edu (L. Debnath).

^a School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454003, Henan Province, China

^b Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539, USA

^{*} Corresponding author.

Two analogues of the inequalities (1.2) and (1.3):

$$\frac{2}{\pi} + \frac{2}{3\pi^4} (\pi^3 - 8x^3) \le \frac{\sin x}{x} \le \frac{2}{\pi} + \frac{\pi - 2}{\pi^4} (\pi^3 - 8x^3) \tag{1.4}$$

and

$$\frac{2}{\pi} + \frac{1}{2\pi^5} (\pi^4 - 16x^4) \le \frac{\sin x}{x} \le \frac{2}{\pi} + \frac{\pi - 2}{\pi^5} (\pi^4 - 16x^4)$$
 (1.5)

were established (see [3,4]).

In view of the inequalities (1.2)–(1.5), we now introduce the approximations family

$$\frac{\sin x}{x} \approx Q(x; a, b, \theta), \quad 0 < x \le \frac{\pi}{2},\tag{1.6}$$

where

$$Q(x; a, b, \theta) = \frac{2}{\pi} + a(\pi^{\theta} - (2x)^{\theta}) + b(\pi^{\theta} - (2x)^{\theta})^{2},$$
(1.7)

and $\theta \ge 2$ is a given real number, and $a, b \in \mathbb{R}$ are parameters.

The first aim of this work is to determine the values

$$a = \frac{2\pi^{-\theta-1}}{\theta}, \qquad b = \frac{(-\pi^2 + 4 + 4\theta)\pi^{-2\theta-1}}{4\theta^2},$$

which provide the best approximation:

$$\frac{\sin x}{x} \approx Q\left(x; \frac{2\pi^{-\theta-1}}{\theta}, \frac{(-\pi^2 + 4 + 4\theta)\pi^{-2\theta-1}}{4\theta^2}, \theta\right) \quad 0 < x \le \frac{\pi}{2}.$$
 (1.8)

The second aim of this work is to give a unified sharpness and generalization of the above inequalities. By using the result obtained, we improve the well-known Yang Le inequality, which is the third aim of this work.

Before stating and proving the main theorems, we first introduce here two lemmas.

Lemma 1. For all integers $n \geq 3$ and all real numbers $\theta \geq 2$,

$$2\left(\frac{4^{n}(4^{n}-1)|B_{2n}|}{(2n)!}\right)\theta^{2}+3\left(\frac{4^{n}(4^{n}-1)|B_{2n}|}{(2n)!}-\frac{4^{n-1}(4^{n-1}-1)|B_{2n-2}|}{(2n-2)!}\right)\theta+\frac{4^{n}(4^{n}-1)|B_{2n}|}{(2n)!}\geq0,\tag{1.9}$$

where the B_{2n} are the Bernoulli numbers defined by

$$\frac{t}{e^t-1}=\sum_{n=0}^\infty B_n\frac{t^n}{n!}.$$

The equality in (1.9) occurs for n = 3 and $\theta = 2$.

Proof. We first show that the inequality (1.9) is true for n = 3, 4 and $\theta > 2$. When n = 3, inequality (1.9) is

$$\frac{4}{15}(\theta - 2)^2 + \frac{7}{15}(\theta - 2) \ge 0, \quad \theta \ge 2.$$

When n = 4, inequality (1.9) is

$$\frac{34}{315}(\theta-2)^2 + \frac{61}{315}(\theta-2) + \frac{1}{105} \ge 0, \quad \theta \ge 2.$$

Now we are in a position to prove that the inequality (1.9) is true for $n \ge 5$ and $\theta \ge 2$. The inequality (1.9) can be written for $n \ge 5$ and $\theta \ge 2$ as

$$(2\theta^2 + 3\theta + 1)\frac{4^n(4^n - 1)|B_{2n}|}{(2n)!} > 3\frac{4^{n-1}(4^{n-1} - 1)|B_{2n-2}|}{(2n-2)!}\theta.$$
(1.10)

It is known [21, p. 805] that

$$\frac{2(2n)!}{(2\pi)^{2n}} < |B_{2n}| < \frac{2(2n)!}{(2\pi)^{2n}(1-2^{1-2n})}, \quad n \ge 1.$$
 (1.11)

Therefore, in order to prove (1.10) it is sufficient to prove that

$$(2\theta^{2}+3\theta+1)\frac{4^{n}(4^{n}-1)}{(2n)!}\frac{2(2n)!}{(2\pi)^{2n}}>3\frac{4^{n-1}(4^{n-1}-1)}{(2n-2)!}\frac{2(2n-2)!}{(2\pi)^{2n-2}(1-2^{3-2n})}\theta,$$

Download English Version:

https://daneshyari.com/en/article/1708931

Download Persian Version:

https://daneshyari.com/article/1708931

<u>Daneshyari.com</u>