Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

A note on graph minors and strong products *

Zefang Wu^a, Xu Yang^{a,*}, Qinglin Yu^b

^a Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, China ^b Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

ARTICLE INFO

Article history: Received 18 May 2009 Received in revised form 8 May 2010 Accepted 12 May 2010

Keywords: Strong product Cartesian product Graph minor Partition

ABSTRACT

Let $G \boxtimes H$ and $G \square H$ denote the strong and Cartesian products of graphs *G* and *H*, respectively. In this note, we investigate the graph minor in products of graphs. In particular, we show that, for any simple connected graph *G*, the graph $G \boxtimes K_2$ is a minor of the graph $G \square Q_r$ by a construction method, where Q_r is an *r*-cube and $r = \chi(G)$. This generalizes an earlier result of Kotlov [2].

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Graphs considered in this note are finite, undirected, simple and connected. We use [1] for terminology and notation not defined here. The *strong product* $G_1 \boxtimes G_2$ of two graphs G_1 and G_2 has vertex set $V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if (1) u_1 is adjacent to u_2 and $v_1 = v_2$ (we call it a *horizontal edge*); or (2) $u_1 = u_2$ and v_1 is adjacent to v_2 (we call it a *vertical edge*); or (3) u_1 is adjacent to u_2 and v_1 is adjacent to v_2 (referred to as a *type* (3) *edge*). For example, $K_2 \boxtimes K_2 = K_4$. The *Cartesian product* $G_1 \square G_2$ of two graphs G_1 and G_2 is obtained from $G_1 \boxtimes G_2$ by deleting the 'type (3)' edges. For example, $K_2 \square K_2 = C_4$. The well-known *n*-dimensional cube or *n*-cube Q_n can be viewed as the Cartesian product of *n* copies of $Q_1 = K_2$.

A graph *H* on vertex set $\{1, ..., n\}$ is a *minor* of a graph *G*, denoted by $H \leq G$, if there are disjoint subsets $V_1, ..., V_n$ of V(G) such that: (1) every V_i induces a connected subgraph of *G*; and (2) whenever *ij* is an edge in *H*, there is an edge between V_i and V_j in *G*.

Kotlov [2] initiated the study of the minor in products of graphs and proved the following result.

Theorem 1.1 (Kotlov [2]). For every bipartite graph G, the strong product $G \boxtimes K_2$ is a minor of $G \square C_4$.

Chandran and Sivadasan [3] studied clique minors in the Cartesian product of graphs. Later, Wood [4] and Chandran, Kostochka and Raju [5] continued the study of clique minors in a Cartesian product of graphs. In particular, Wood [4] showed that the lexicographic product $G \circ H$ is a minor of $G \Box H \Box H$ for every bipartite graph G and every connected graph H. In this note, we continue the study of the strong product minor in a Cartesian product started by Kotlov [2] and obtain several results in this direction.

This work was supported by The Discovery Grant (144073) of the Natural Sciences and Engineering Research Council of Canada.
* Corresponding author. Tel.: +86 02223494039.

E-mail address: yangxu54@hotmail.com (X. Yang).

^{0893-9659/\$ –} see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2010.05.007

2. Main results

Motivated by Theorem 1.1, we study minors in Cartesian products of graphs. The proof techniques are mainly constructive. As usual, χ denotes the chromatic number of *G*.

Theorem 2.1. Let *G* be a connected graph with chromatic number χ . Then $G \boxtimes K_2 \preceq G \Box Q_{\chi}$.

Denote the Hamming graph $K_{k_1} \Box K_{k_2} \Box \cdots \Box K_{k_d}$ with $k_1 = k_2 = \cdots = k_d = n$ by K_n^d . With a similar construction, we can obtain the following theorem.

Theorem 2.2. Let *G* be a connected graph with chromatic number χ . Then $G \boxtimes K_n \preceq G \square K_n^{\chi}$.

Theorem 2.3. Let *G* be a connected graph. Then $G \boxtimes K_2 \preceq G \square K_a$, where *a* is an integer satisfying $\begin{pmatrix} a-1 \\ \lceil a \rceil \end{pmatrix} \ge \chi(G)$.

Remark 1. If we choose *a* as small as possible (i.e., $a = \min\{m : {m-1 \atop \lceil \frac{m}{2} \rceil} \ge \chi(G)\}$), the result is sharp when χ is small and *G* is sufficiently dense. For example, for any bipartite graph *G* which is sufficiently dense, $G \boxtimes K_2 \not\leq G \square K_3$ (see [2]). If $G = K_3$, then we have $K_3 \boxtimes K_2 \not\leq K_3 \square K_3$, ¹ but $K_3 \boxtimes K_2 \leq K_3 \square K_4$.

What follows is an immediate corollary of the above.

Corollary 2.4. For every 3-colorable graph *G*, the graph $G \boxtimes K_2$ is a minor of $G \square K_4$.

Hadwiger [6] linked the chromatic number of a graph *G* to the maximum size of its clique minor. He conjectured that every *k*-chromatic graph has a K_k -minor. This is one of the most intriguing conjectures in today's graph theory. The *Hadwiger* number $\eta(G)$ of a graph *G* is the maximum *n* such that K_n is a minor of *G*. A lot of research has been done on determining the Hadwiger number in special classes of graphs (see [3–5]).

Setting $G = K_{\chi}$ in Theorem 2.3, we readily obtain the following result on the Hadwiger number of a Hamming graph.

Corollary 2.5. $\eta(K_{\chi} \Box K_{a}) \ge 2\chi$, if $\begin{pmatrix} a-1 \\ \lceil \frac{a}{2} \rceil \end{pmatrix} \ge \chi$.

Remark 2. In [4], Wood proved that $\eta(K_n \Box K_m) \ge n\sqrt{\frac{m}{2}} - \mathcal{O}(n + \sqrt{m})$. It is not hard to verify that when $\chi \le 35$,² Corollary 2.5 is an improvement of Wood's result.

3. Proofs of the main results

Before giving the proofs of main results, a few definitions and a lemma are required. They play important roles in the proofs of theorems. Let us call two partitions P, P' of the same set *A crossing* if every block of *P* intersects every block of P'. A partition containing *k* blocks is called a *k*-partition.

Lemma 3.1. Let G, H be two graphs and $\chi = \chi(G)$. If there exist χ pairwise crossing n-partitions of V(H) such that

(P1) every block of each partition induces a connected subgraph of V(H),

(P2) every pair of blocks in a partition are adjacent (induce an edge with end-vertices in both blocks),

then $G \boxtimes K_n$ is a minor of $G \Box H$.

Proof. Since *G* is χ -chromatic, there exists a χ -coloring *c* of *V*(*G*) such that c(v) = i when $v \in V(G)$ is colored *i* for all $1 \leq i \leq \chi$. Clearly, { $v \in V(G) : c(v) = i$ } induces an independent set in *G* for all $1 \leq i \leq \chi$. Suppose that { $A_{i,1}, A_{i,2}, \ldots, A_{i,n}$ }, $1 \leq i \leq \chi$ are χ pairwise crossing *n*-partitions of *V*(*H*) satisfying properties (P1) and (P2).

For each vertex $v \in V(G)$ and each $1 \leq j \leq n$, let

$$V_j(v) = \{(v, u) : u \in A_{c(v),j}\}.$$

Since for each i, $\bigcup_{j=1}^{n} A_{i,j} = V(H)$, then $\bigcup_{j=1}^{n} V_j(v)$ is an H-layer of $G \Box H$. And it is not difficult to show that the collection of sets $\{V_j(v) : 1 \le j \le n, v \in V(G)\}$ is a partition of $V(G \Box H)$. Now, we check that $G \boxtimes K_n \le G \Box H$ by definition.

For each $v \in V(G)$ and each $1 \leq j \leq n$, it follows from (P1) that $\{u : u \in A_{c(v),j}\}$ induces a connected subgraph in H, and hence $V_j(v)$ induces a connected subgraph in $G \square H$ by the definition of the Cartesian product.

¹ Suppose that $K_6 \leq K_3 \Box K_3$. Then $V(K_3 \Box K_3)$ has branch sets X_1, \ldots, X_6 , each of which is connected by at least one edge. If there exists X_i , say X_1 , such that $|X_1| = 1$, then $\Delta(K_3 \Box K_3) = 4$, contradicting the fact that X_1 is adjacent to X_i for all $2 \leq i \leq 6$. Thus, $|X_i| \geq 2$ and $\sum_{i=1}^{6} |X_i| \geq 12 > 9 = |V(K_3 \Box K_3)|$, a contradiction.

² If $a \leq 8$, then $\chi \leq 35$ and $2\chi \geq \chi \sqrt{\frac{m}{2}}$.

Download English Version:

https://daneshyari.com/en/article/1708981

Download Persian Version:

https://daneshyari.com/article/1708981

Daneshyari.com