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a b s t r a c t

Constraining an interpolation to be shape preserving is a well established technique for
modelling scientific data. Many techniques express the constraint variables in terms of
abstract quantities that are difficult to relate to either physical values or the geometric
properties of the interpolant. In this paper,we construct a piecewisemonotonic interpolant
where the degrees of freedom are expressed in terms of the weights of the rational Bézier
cubic interpolant.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

There exist many interpolating methods which derive sufficient conditions to ensure the resulting interpolant preserves
some geometric aspect of the data, for example, monotonicity. All develop constraints based on parameters of the
interpolating polynomial which either has no correspondence with the data or the natural geometry of the interpolant.
For example, Fritsch and Butland [1], Fritsch and Carlson [2] and Higham [3] used piecewise cubic Hermite polynomials
to interpolate monotone data (increasing data with positive derivatives). Although the cubic Hermite schemes interpolate
data and derivatives, they did not preserve the shape of monotone data. The authors in [1–3] proposed different remedies
of the problem, for example, the schemes. [2,4] first identified the interval in which monotonicity was lost by ordinary
cubic Hermite interpolant then modified the derivatives to obtain the required results. The scheme of [3] Higham inserts
extra knots to preserve monotonicity. The scheme proposed by Schumaker [5] was economical due to piecewise quadratic
polynomial interpolant and preserved monotonicity. However, its drawback is that it is of degree two only. Gregory and
Delbourgo [4] introduced a family of rational quadratic functions with quadratic denominator. They exploited the free
parameters of the rational quadratic function to preserve the shape of monotone data. Hussain and Hussain [6] used a
rational cubic function to preserve the shape ofmonotone curve data, again by exploiting the free parameters of the function.
Hussain and Sarfraz [7] used a rational cubic function with four free parameters. Two parameters are the constraints for
the shape preserving monotone data while two parameters are free for the user to refine the shape of monotone curve.
Hussain et al. [8] used a rational cubic function and imposed the shape preserving constraints on the functions one free
parameter.

The aim of this paper is to develop a monotonicity preserving curve interpolant based on rational cubic Bézier basis
functions where the sufficient conditions are expressed in terms of the weights. We first derive the sufficient conditions for
a rational cubic Bézier univariate function to preserve monotonicity. This is then readily extended to vector valued data.
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2. Basics

Given two end points, P0 and P3 with P3 > P0, and two end derivatives, D0 and D3, construct a monotonically increasing
rational Hermite interpolant. Expressed as a rational cubic Bézier, we have

P(u) =
p(u)
ω(u)

=

3
i=0

bi,3(u) ωi Pi

3
i=0

bi,3(u) ωi

,

where bi,3(u) =
3 Ci(1 − u)3−iui are the Bernstein basis functions and Pii = 0, . . . , 3 are the control points of the Bézier

curve. Let the input data be the end points and end derivatives, i.e. P0 = P(0), P3 = P(1); D0 = Ṗ(0) & D3 = Ṗ(1). Then
we require the conditions on the weights, ωi i = 0, . . . , 3 such that Ṙ(u) > 0.

3. Analysis

The sufficient conditions on the weights of the rational cubic Bézier interpolant to preserve monotonicity is

ω0 ω3

ω1 ω2
> 3. � (1)

Proof
Writing ω(u) P(u) = p(u) and differentiating with respect to u gives

ω̇(u) P(u) + ω(u) Ṗ(u) = ṗ(u).

Rearranging gives

Ṗ(u) =
1

ω(u)
[ṗ(u) − ω̇(u) Pu] =

1
ω(u)2

[ω(u) ṗ(u) − ω̇(u) p(u)] .

We note that

Ṗ(0) =
3ω1

ω0
(P1 − P0)

Ṗ(1) =
3ω2

ω3
(P3 − P2) .

Thus for monotonicity we require

S(u) =

ω(u) Ṗ(u) − ω̇(u) p(u)


= [S0(u) − S1(u)] > 0

since ω(u)2 > 0. Now

S0(u) = 3
5

i=0

bi,5(u)P0,i and S1(u) = 3
5

i=0

bi,5(u)P1,i,

where

P0,0 = ω0 (ω1P1 − ω0P0)

P0,1 =


3
5
ω1 (ω1P1 − ω0P0) +

2
5
ω0 (ω2P2 − ω1P1)


P0,2 =


1
10

ω0 (ω3P3 − ω2P2) +
6
10

ω1 (ω2P2 − ω1P1) +
3
10

ω2 (ω1P1 − ω0P0)


P0,3 =


3
10

ω1 (ω3P3 − ω2P2) +
6
10

ω2 (ω2P2 − ω1P1) +
1
10

ω3 (ω1P1 − ω0P0)


P0,4 =


3
5
ω2 (ω3P3 − ω2P2) +

2
5
ω3 (ω2P2 − ω1P1)


P0,5 = ω3 (ω3P3 − ω2P2)
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