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a b s t r a c t

An empirical mode decomposition (EMD) method based on Multi-Quadrics radial basis
function (MQ-RBF) quasi-interpolation (the Quasi-MQ EMD method) is presented and
applied to similarity analysis of DNA sequences. The MQ-RBF quasi-interpolation is taken
to approximate the extrema envelopes during the intrinsic mode function (IMF) sifting
process. Our method is simple, easy to implement, and does not require solving any linear
system of equations. Then we use the classic EMD method and our method to compare
the local similarities among DNA sequences respectively. The work tests our method’s
suitability and better performance for local similarity analysis of DNA sequences by using
the mitochondria of four different species.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The research into biological sequences is a crucial and basic part of scientific study. It is valuable to use the similarity of
the mitochondrial DNA sequences, which is called conserved sequences, to study relationships among different species. In
order to analyze the DNA sequence, one converts it into one-dimensional or multi-dimensional discrete complex sequences
[1–6]. It can be called signalization of a DNA sequence. The DNA sequence is in one to one correspondence with its signal
sequence, so if we want to analyze and compare the features and similarity of DNA sequences, the only thing that we need
do is compare the features and investigate the similarity of their signal sequences.

EMD is a nonlinear, non-stationary signal processingmethodproposed byNordenHuang et al. [7] in 1998. It is an adaptive
and nonlinear signal decomposition approach. It can extract these intrinsicmodes from the original signal, based on the local
characteristic scale of data itself, and represent each intrinsic mode as an IMF, which meets the following two conditions:
(1) in the whole data set, the number of extrema and the number of zero crossings must either equal or differ at most by
one; (2) at any point, the mean value of the envelopes defined by the local maxima and the envelopes defined by the local
minima is close to zero. The two conditions ensure that an IMF is a nearly periodic function and the mean is close to zero.
With this method, a complicated data set can be decomposed into a small number of IMFs that admit well-behaved Hilbert
transforms, with an additional residue being either the mean trend or a constant. We use the EMD method to analyze the
similarity of DNA sequences by comparing the corresponding residues in [8].

However, in practice, the EMD method has met several problems, such as boundary extension, curve fitting and stop
criteria. In the classic EMD [7] method, one uses cubic spline functions to obtain the upper and lower envelopes of data. The

✩ Manuscript received October 13, 2010. This work was supported by the National Natural Science Foundation of China (Nos. U0935004, 11071031,
11001037, 10801024), the Fundamental Research Funds for the Central Universities (DUT10ZD112, DUT10JS02, DUT11LK34) and Educational Commission
of Liaoning Province of China (Grant No. 2009A125).
∗ Corresponding author at: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China. Tel.: +86 411 86243032; fax: +86

411 86243032.
E-mail addresses: iamzjh@126.com (J. Zhang), renhong@dlut.edu.cn (R. Wang), bfl0219@163.com (F. Bai), zhengjunsheng@neusoft.edu.cn (J. Zheng).

0893-9659/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.05.041

http://dx.doi.org/10.1016/j.aml.2011.05.041
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:iamzjh@126.com
mailto:renhong@dlut.edu.cn
mailto:bfl0219@163.com
mailto:zhengjunsheng@neusoft.edu.cn
http://dx.doi.org/10.1016/j.aml.2011.05.041


J. Zhang et al. / Applied Mathematics Letters 24 (2011) 2052–2058 2053

cubic spline interpolating methods may produce large swings near the ends of data, which may make the decomposition of
data inaccurate. Various methods are proposed to improve it. In [9], a B-spline approach is proposed to fit the extremes of
data, which improves the analytical performance. In [10], a rational spline EMD and flexible treatment of the end conditions
are discussed. In [11,12], the TPS-RBF is made use of surface interpolation in bi-dimensional EMD. See papers [13–15] for
other works on the EMD methods.

RBF is a useful tool for fitting scattered data, because of its accuracy, spectral convergence, simplicity and ease of
implementation. Among all RBFs currently in use, the MQ-RBF [16] is probably best understood, both theoretically and
practically, and it usually ranks the best in accuracy. However, in order to obtain the MQ-RBF interpolation, one must
resolve a linear system of equations. When the number of samples is large, the method shows the typical drawbacks of
global methods, since the interpolation is influenced by all the data. Moreover, the condition number of the interpolation
matrix heavily relies on the data density, which leads to unstable solutions or unacceptable computational costs [17]. There
are differentways to overcome this ill-conditioning problem, and theMQquasi-interpolationmethod [18,19] is one of them.

AnEMDmethodusingMQ-RBF quasi-interpolation, named theQuasi-MQEMDmethod, is presented andused to compare
the similarities among different species in this paper. Comparedwith the classic EMDmethod, ourmethod is simple, easy to
implement and showing better performance in local similarity analysis of DNA sequences. The paper is organized as follows:
the MQ-RBF quasi-interpolation is introduced in Section 2. In Section 3, we propose the Quasi-MQ EMDmethod, where the
extrema envelopes are approximated by the MQ-RBF quasi-interpolation during the IMF sifting process. Similarity analysis
of DNA sequences by using the classic EMD and our method is given in Section 4. We select mitochondrial DNA sequences
of four species—the common chimpanzee (D38116), pygmy chimpanzee (D38113), fin whale (X61145), and blue whale
(X72204)—as our research objects. Finally, we make use of the EMD method and our method to carry out research on the
similarity, respectively.

2. MQ-RBF quasi-interpolation

TheMQ-RBF ϕ(r) =
√
r2 + c2, was proposed by Hardy [20] in 1971, where r = ‖x‖, c > 0 is called the shape parameter.

A review by Franke [16] showed that the MQ outperformed 29 methods in terms of accuracy and efficiency. Although the
MQ interpolation is always solvable when the data points are distinct, the resulting matrix quickly becomes ill-conditioned
as the number of points increases. The quasi-interpolation method is a good choice to overcome this problem.

Wu and Schaback [19] proposed the univariate MQ quasi-interpolation scheme LD with the MQ function ϕj(x) =
(x − xj)2 + c2, j = 0, 1, . . . , n and proved that the scheme is shape preserving and produces linear polynomials. Given

points {(xj, fj)}nj=0, where x0 < x1 < · · · < xn, and fj = f (xj), the scheme LD is defined as follows:

(LDf )(x) = f0α0(x)+ f1α1(x)+

n−2−
j=2

fjψj(x)+ fn−1αn−1(x)+ fnαn(x), (2.1)

where

α0(x) =
1
2

+
ϕ1(x)− (x − x0)

2(x1 − x0)
, α1(x) =

ϕ2(x)− ϕ1(x)
2(x2 − x1)

−
ϕ1(x)− (x − x0)

2(x1 − x0)
,

αn(x) =
1
2

+
ϕn−1(x)− (xn − x)

2(xn − xn−1)

αn−1(x) =
(xn − x)− ϕn−1(x)

2(xn − xn−1)
−
ϕn−1(x)− ϕn−2(x)
2(xn−1 − xn−2)

,

ψj(x) =
ϕj+1(x)− ϕj(x)
2(xj+1 − xj)

−
ϕj(x)− ϕj−1(x)
2(xj − xj−1)

, j = 2, . . . , n − 2.

Theorem 2.1 ([19]). For f ∈ C2
[a, b], the quasi-interpolation LDf defined by Eq. (2.1) on the points x0 < x1 < · · · < xn satisfies

the error estimate: ‖f −LDf ‖∞ ≤ k1h2
+k2ch+k3c2| log h|,where h = max1≤j≤n{xj−xj−1}, and k1, k2, k3 are positive constants

independent of h and c. LDf (x) has an error O(h2) only if c2| log c| = O(h2).

Theorem 2.2 ([21]). The quasi-interpolation scheme LDf defined by Eq. (2.1) is variation-diminishing.

3. The quasi-MQ EMDmethod

Weuse theMQ-RBF quasi-interpolation to approximate the extrema envelopes. Comparedwith previousmethods,which
interpolate the envelopes, our method has the following advantages.

(1) It has a simple expression (see Eq. (2.1)) and does not require solving any linear system of equations;
(2) MQ-RBF has high accuracy, spectral convergence, and is easy to implement.
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