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Free vibrations for some Koiter shells of revolution
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Abstract

The asymptotic behaviour of the smallest eigenvalue in linear Koiter shell problems is studied, as the thickness parameter tends
to zero. In particular, three types of shells of revolution are considered. A result concerning the ratio between the bending and the
total elastic energy is also provided, by using the general theory detailed in [L. Beirão da Veiga, C. Lovadina, An interpolation
theory approach to Shell eigenvalue problems (submitted for publication); L. Beirão da Veiga, C. Lovadina, Asymptotics of shell
eigenvalue problems, C.R. Acad. Sci. Paris 9 (2006) 707–710].
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1. Introduction and problem description

In considering the free vibrations of shells using the Koiter model (see [8,6,5], for instance), one is led to study the
following eigenvalue problem in variational form:

Find (ut , λt ) ∈ V × R such that
tam(ut , v) + t3ab(ut , v) = λt mt (ut , v) ∀v ∈ V
‖ut‖0 = 1.

(1)

Above, t is the shell thickness parameter and V is the space of admissible displacements, incorporating also the
kinematic boundary conditions. The bilinear forms am(·, ·) and ab(·, ·) are independent of t and are associated with
the membrane and bending energy, respectively. Finally, mt (·, ·) is the mass bilinear form. We notice that for an
eigenvalue λt , the corresponding shell vibration frequency is given by ωt =

√
λt .

In this work we are interested in the smallest eigenvalue of problem (1), still denoted by λt , and in particular we
focus on the asymptotic behaviour of the function t → λt , as t → 0+. We will also consider the percentage of the
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elastic energy stored in the bending part. Accordingly, for (ut , λt ) ∈ V × R solution of (1), we define the function
R(t, ut ) as

R(t, ut ) :=
t3ab(ut , ut )

λt
. (2)

We examine a set of shells of revolution, whose mid-surfaces are all defined as follows. Let I ⊂ R be a bounded
closed interval, and let f : I → R+ be a regular function. The shell mid-surface is parametrised by means of the
mapping

φ : Ω = I × [0, 2π ] −→ R3
; φ(ξ1, ξ2) = (ξ1, f (ξ1) sin ξ2, f (ξ1) cos ξ2). (3)

In particular, we study the following shells, which cover the three fundamental types of mid-surface geometry.

Parabolic cylinder: f ′′(ξ1) = 0 ∀ξ1
∈ I (4)

Elliptic cylinder: f ′′(ξ1) < 0 ∀ξ1
∈ I (5)

Hyperbolic cylinder: f ′′(ξ1) > 0 ∀ξ1
∈ I. (6)

For all the shells, we impose clamped boundary conditions at both ends (ξ1, ξ2) ∈ ∂ I × [0, 2π ]. Accordingly, the
space of admissible displacements is

V = [H1
0 (Ω)]2

× H2
0 (Ω). (7)

We do not need now to explicitly describe the bilinear forms: it is sufficient to recall that:

1. The bilinear forms am(·, ·) and ab(·, ·) are symmetric and continuous on V .
2. The sum am(·, ·) + ab(·, ·) is coercive on V .
3. The symmetric and positive-definite mass bilinear form mt (·, ·) satisfies

mt (v, v) ∼ t‖v‖
2
0 . (8)

We now introduce the following definition (cf. [2]).

Definition 1.1. We say that the eigenvalue problem (1) is of order α if

α = inf
{
β : tβλ−1

t ∈ L∞(0, 1)
}

. (9)

Remark 1.1. Definition 1.1 means that if the eigenvalue problem is of order α, then α is the “best” exponent in order
to have λt ∼ tα . Furthermore, it is easily seen that if the eigenvalue problem (1) is of order α, then 0 ≤ α ≤ 2.

Remark 1.2. In [2,3] a different scaling has been employed for the right-hand side of problem (1). More precisely, the
term λt mt (ut , v) is there replaced by a term of the type λ∗

t (ut , v)0, where λ∗
t denotes the corresponding eigenvalue.

As a consequence of (8), we have λt ∼ t−1λ∗
t . Accordingly, the problem order α∗ is given by α∗

= α + 1. This shift
should be taken into account when comparing the results of the present note with those given in [2,3].

2. Asymptotic behaviour of λt and of R(t, ut)

We first notice that for all the shells under consideration am(·, ·) defines a norm on V . Indeed, using the clamped
boundary conditions, it is easy to see that am(v, v) = 0 if and only if v = 0. We set H := [L2(Ω)]3 and W as the
completion of V with the norm am(v, v)1/2

:= ‖v‖W . Therefore, we have the dense inclusion V ⊆ W , which implies
W ′

⊆ V ′ densely. We have the following result, whose proof involves the interpolation theory (see [4,9], for instance)
and can be found in [2].

Theorem 2.1. Suppose that am(v, v) = 0 if and only if v = 0. The order α of the eigenvalue problem (1) is given by

α = inf
{
2θ : H ⊆ (W ′, V ′)θ,1

}
= inf

{
2θ : (V, W )1−θ,2 ⊆ H

}
. (10)



Download English Version:

https://daneshyari.com/en/article/1709147

Download Persian Version:

https://daneshyari.com/article/1709147

Daneshyari.com

https://daneshyari.com/en/article/1709147
https://daneshyari.com/article/1709147
https://daneshyari.com

