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a b s t r a c t

In this paper we investigate the asymptotic behavior of solutions to the initial boundary
value problem for a mixture of two rigid solids modeling temperature and porosity. Our
main result is to establish conditions which ensure the analyticity and the exponential
stability of the corresponding semigroup.
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1. Introduction

This article is concerned with a special case of a linear theory for binary mixtures of porous viscoelastic materials.
The theory of viscoelastic mixtures has been investigated by several authors (see for instance, [1–3] and the references
therein). In [1] binarymixtures have been consideredwhere the individual components aremodeled as porous Kelvin–Voigt
viscoelastic materials and the volume fraction of each constituent was considered as an independent kinematical quantity.
The authors assumed that the constituents have a common temperature and that every thermodynamical process that takes
place in the mixture satisfies the Clausius–Duhem inequality. At the end of that work, they presented as an application the
interaction between the temperature field θ and the porosity fields u andw in a homogeneous and isotropic mixture. In this
case, and after some considerations, the equations which govern the fields u, w and θ in the absence of body loads are given
by the system

ρ1utt − a11 1u − a12 1w − b11 1ut − b121wt + α (u − w) − k1 1θ − β1 θ = 0 in Ω × (0, ∞),

ρ2 wtt − a12 1u − a22 1w − b12 1ut − b22 1wt − α (u − w) − k2 1θ − β2 θ = 0 in Ω × (0, ∞),

c θt − κ 1θ + k1 1ut + k2 1wt + β1 ut + β2 wt = 0 in Ω × (0, ∞), (1.1)
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where Ω is a bounded domain of R3 with smooth boundary ∂Ω . The function u = u(x, t) (and w = w(x, t)) represents
the fraction field of a constituent and θ = θ(x, t) the difference of temperature between the actual state and a reference
temperature. We consider the following initial and boundary conditions

u(x, 0) = u0, ut(x, 0) = u1, w(x, 0) = w0, wt(x, 0) = w1, θ(x, 0) = θ0 in Ω

u(x, t) = u(x, t) = w(x, t) = w(x, t) = θ(x, t) = θ(x, t) = 0 on ∂Ω.
(1.2)

We assume that ρ1, ρ2, c, κ , and α are positive constants. Since coupling is considered, we consider

β2
1 + β2

2

 
k21 + k22


≠

0, but the sign of βi or ki (i = 1, 2) does not matter in the analysis. The matrix A = (aij) is symmetric and positive
definite and B = (bij) ≠ 0 is symmetric and non-negative definite, that is, a11 > 0, a11a22 − a212 > 0, b11 ≥ 0 and
b11b22 − b212 ≥ 0. Our purpose in this work is to investigate the stability of the solutions to the system (1.1)–(1.2). The
asymptotic behavior, as t → ∞, of solutions to the equations of linear thermoelasticity has been studied by many authors.
Obviously, to get these stability results, we consider several restrictions on the constitutive coefficients. In this sense, this
system of equations does not intend to model the general problem. We refer to the book of Liu and Zheng [4] for a general
survey on these topics. However, we recall that very few contributions have been addressed to study the time behavior
of the solutions of nonclassical elastic theories. In this direction we mention the works [3,5–7]. In [8], the authors treat
a similar problem for a one-dimensional mixture modeling temperature and porosity and prove the exponential decay of
solutions. We note that we cannot expect that this system always decays in a exponential way. For instance, in case that
β1 +β2 = 0, k1 + k2 = 0, ρ2 (a11 + a12) = ρ1 (a12 + a22) and b11 + b12 = b12 + b22 = 0 we can obtain solutions of the form
u = w and θ = 0. These solutions are undamped and do not decay to zero. These are very particular cases, but we will see
that there are some other caseswhere the solutions decay, but the decay is not so fast to be controlled by an exponential. Our
main result is to obtain conditions over the coefficients of the system (1.1) to ensure the exponential stability as well as the
analyticity of the semigroup associated with (1.1)–(1.2). We follow the same line of reasoning adopted in the papers [5,6].
This paper is organized as follows. Section 2 outlines briefly thewell-posedness of the system is established. In Section 3, we
show the exponential stability of the corresponding semigroup provided that certain conditions are guaranteed. In Section 4,
we treat the analyticity of the semigroup. In the last Section 5 we show, for some cases, the lack of exponential stability of
the semigroup. Throughout this paper C is a generic constant.

2. The existence of the global solution

In this section, we use the semigroup approach to show the well-posedness of the system. We introduce the face space
H = H1

0 (Ω) × H1
0 (Ω) × L2(Ω) × L2(Ω) × L2(Ω) equipped with the inner product given by

⟨(u1, w1, v1, η1, θ1), (u2, w2, v2, η2, θ2)⟩H = a11 ⟨∇u1, ∇u2⟩ + a22 ⟨∇w1, ∇w2⟩

+ a12 (⟨∇u1, ∇w2⟩ + ⟨∇w1, ∇u2⟩) + α ⟨u1 − w1, u2 − w2⟩ + ρ1 ⟨v1, v2⟩ + ρ2 ⟨η1, η2⟩ + c ⟨θ1, θ2⟩

where ⟨u, v⟩ =


Ω
uv dx, and the induced norms | · | and ∥ · ∥H which are equivalent to the usual norms in L2(Ω) and H ,

respectively. We also consider the linear operator A : D(A) ⊂ H → H

A
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
whose domainD(A) is the subspace ofH consisting of vectors (u, v, w, η, θ) such that v, η, θ ∈ H1

0 (Ω), κ θ −k1v−k2 η ∈

H2(Ω), a11u+a12w+b11v+b12 η+k1 θ ∈ H2(Ω), and a12u+a22w+b12v+b22 η+k2 θ ∈ H2(Ω). The system (1.1)–(1.2) can
be rewritten as the following initial value problem d

dtU(t) = AU(t),U(0) = U0 for all t > 0withU(t) = (u, w, ut , wt , θ)T

and U0 = (u0, w0, u1, w1, θ0)
T , and the T is used to denote the transpose. We can show that the operator A is densely

definite, dissipative, that is, Re ⟨AU,U⟩H 6 0, for all U ∈ D(A), and 0 belongs to the resolvent set of A, denoted by ρ(A)
(see [6]). Therefore, using the Lumer–Phillips theorem we conclude that the operator A generates a C0-semigroup SA(t) of
contractions on the space H . The following theorem follows.

Theorem 2.1. For any U0 ∈ H , there exists a unique solution U(t) = (u, w, ut , wt , θ) of (1.1)–(1.2) satisfying u, w ∈

C([0, ∞[: H1
0 (Ω)) ∩ C1([0, ∞[: L2(Ω)), θ ∈ C([0, ∞[: L2(Ω)) ∩ L2(]0, ∞[: H1

0 (Ω)). If U0 ∈ D(A) then u, w ∈ C1([0, ∞[:

H1
0 (Ω)) ∩ C2([0, ∞[: L2(Ω)), θ ∈ C([0, ∞[: H1

0 (Ω)) ∩ C1([0, ∞[: L2(Ω)), and

a11u + a12w + b11 ut + b12 wt + k1 θ ∈ C([0, ∞[: H2(Ω))

a12u + a22w + b12 ut + b22 wt + k2 θ ∈ C([0, ∞[: H2(Ω))

κ θ − k1 ut − k2 wt ∈ C([0, ∞[: H2(Ω)).



Download	English	Version:

https://daneshyari.com/en/article/1709186

Download	Persian	Version:

https://daneshyari.com/article/1709186

Daneshyari.com

https://daneshyari.com/en/article/1709186
https://daneshyari.com/article/1709186
https://daneshyari.com/

