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a b s t r a c t

A clique-transversal set D of a graph G is a set of vertices of G such that Dmeets all cliques of
G. The clique-transversal number, denoted by τC (G), is the minimum cardinality of a clique-
transversal set in G. In 2008, we showed that the clique-transversal number of every claw-
free cubic graph is bounded above by half of its order. In this notewe characterize claw-free
cubic graphs which attain the upper bound.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

All graphs considered here are finite, simple and nonempty. For standard terminology not given here we refer the reader
to [1].

Let G = (V , E) be a graph with vertex set V and edge set E. For a vertex v ∈ V , the open neighborhood N(v) of v is defined
as the set of vertices adjacent to v, i.e., N(v) = {u | uv ∈ E}. The closed neighborhood of v is N[v] = N(v) ∪ {v}. For a subset
S ⊆ V , the open neighborhood of S is N(S) =


v∈S N(v) and the closed neighborhood of S is N[S] =


v∈S N[v]. The degree

of v is equal to |N(v)|, denoted by dG(v) or simply d(v). If dG(v) = k for all v ∈ V , then we call G k-regular. In particular, a
3-regular graph is also called a cubic graph. For a subset S ⊆ V , the subgraph induced by S is denoted by G[S], and we let
NS(v) denote the set of vertices in S that are adjacent to v. As usual, Ki,j denotes the complete bipartite graph with classes
of cardinality i and j; Kn is the complete graph on n vertices. The graph K1,3 is also called a claw and K3 a triangle. The graph
K4 −e (with one edge removed from K4) is called a diamond. A graph G is said to be claw-free if it does not contain an induced
subgraph that is isomorphic to a claw. A subset S of V is called an independent set of G if no two vertices of S are adjacent
in G.

The clique-transversal set in graphs can be regarded as a special case of the transversal set in hypergraph theory [2]. A
clique C of a graph G is a complete subgraph maximal under inclusion and having at least two vertices. According to this
definition, isolated vertices are not considered to be cliques here. A clique of order m of G is called an m-clique of G. A set
D ⊆ V is called a clique-transversal set of G if D meets all cliques of G, i.e., D ∩ V (C) ≠ ∅ for any clique C of G. The clique-
transversal number, denoted by τC (G), is the minimum cardinality of a clique-transversal set of G.

Erdős et al. [3] have proved that the problem of finding a minimum clique-transversal set for a graph is NP-hard. It is
therefore of interest to determine bounds on the clique-transversal number of a graph. In [3] the authors showed that every
graph of order n has clique-transversal number at most n −

√
2n + 3/2 and they observed that τC can be very close to
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Fig. 1. (a) The double triangle F1; (b) The diamond F2 .

n = |V (G)|, namely τC = n−o(n) can hold. On the other hand, one also observes that τC can be very small (possibly τC = 1)
for general graphs. On the basis of the fact above, it is reasonable to ask how drastically τC decreases or increases when some
assumptions are imposed on the graph G. From this point of view, Tuza [4] and Andreae [5] established upper bounds on
τC for chordal graphs. Andreae et al. [6] investigated classes of graphs of order n for which τC ≤ n/2. In [7] we established
sharp lower bounds on τC for connected k-regular graphs. Recently, Bacsó and Tuza [8] found the tight upper bound on τC
for cubic graphs. For other investigations on the clique-transversal sets in graphs, we refer the reader to [9–12].

In [7]we also showed that 3n/8 ≤ τC (G) ≤ n/2 for a cubic claw-free graphG of order n. This note gives a characterization
of the extremal graphs attaining the upper bound.

2. The main results

Theorem 1 ([7]). For any claw-free cubic graph G of order n where G ≁= K4,
3
8n ≤ τC (G) ≤

n
2 .

Lemma 2. Let G be claw-free cubic graph of order n. If every triangle of G is contained in a diamond, then

τC (G) =


3
8
n if n ≡ 0(mod 8);

3n + 4
8

otherwise.

Proof. SinceG is claw-free, each vertex ofG lies in a triangle. Furthermore, since every triangle ofG is contained in a diamond,
the graph G can be viewed as a ‘‘cycle’’ on ‘‘vertices’’ where each ‘‘vertex’’ is a copy of a diamond. That is, G is obtained from
the disjoint union of k (≥ 2) copies of a diamond by pairing arbitrarily all the vertices of degree 2 in distinct copies and
joining all paired vertices of degree 2 so that each vertex of G has degree 3. By the parity of k, we have n ≡ 0(mod 8) or
n ≡ 4(mod 8). By Theorem 1, we have

τC (G) ≥ ⌈3n/8⌉ =


3
8
n if n ≡ 0(mod 8);

3n + 4
8

otherwise.

Next we show that the converse inequality holds by induction on k. For k = 2, 3, it is easy to check that the assertion is
true. Therefore we may assume that k ≥ 4 for the induction step.

Let A and B be two consecutive diamonds of G. We delete the set V (A) ∪ V (B). This yields two vertices of degree 2, say
u and v. Note that uv ∉ E(G). Add new edge uv and we denote by G′ the resulting graph. By the induction hypothesis,
the assertion holds for G′. So τC (G′) ≤ ⌈3|V (G′)|/8⌉ = ⌈3(n − 8)/8⌉. Let S ′ be a minimum clique-transversal set of G′.
Obviously, u ∈ S ′ or v ∈ S ′. It is easy to see that we can choose three vertices x, y, z in V (A) ∪ V (B) such that S ′

∪ {x, y, z} is
a clique-transversal set of G. Hence τC (G) ≤ |S ′

| + 3 ≤ ⌈3(n − 8)/8⌉ + 3 ≤ ⌈3n/8⌉. �

For a claw-free cubic graph G, let T be a triangle as an induced subgraph of G and |N(V (T )) ∩ (G − V (T ))| = 3. If
N(V (T )) ∩ (G − V (T )) is an independent set of vertices in G, we call T an isolated triangle of G. Otherwise, Gmust contain a
double triangle (see Fig. 1(a)) as its induced subgraph.

Theorem 3. If G is a claw-free cubic graph of order n, then τC (G) =
n
2 if and only if G is diamond-free.

Proof. Suppose that G is diamond-free. Since G is cubic and claw-free, each vertex of G lies exactly in one 2-clique and one
3-clique in G. Hence G contains a precise total of n/2 2-cliques and any two 2-cliques in G are disjoint. This implies that
τC (G) ≥ n/2. By Theorem 1, we have τC (G) = n/2.

Conversely, suppose that G contains at least one diamond with τC (G) = n/2. Choose such a graph Gwith as few vertices
as possible. Then G is connected. If G contains neither isolated triangles nor double triangles, then every triangle of G must
be contained in a diamond. By Lemma 2, we have τC (G) < n/2, contradicting our assumption. Therefore, G contains isolated
triangles or double triangles as its induced subgraphs.

Suppose that G contains double triangles as its induced subgraphs of G. We have the following claim.
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