

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Claw-free cubic graphs with clique-transversal number half of their order*

Erfang Shan*, Haichao Wang

Department of Mathematics, Shanghai University, Shanghai 200444, China

ARTICLE INFO

Article history: Received 29 May 2010 Received in revised form 17 January 2011 Accepted 25 January 2011

Keywords: Clique-transversal set Cubic graph Claw-free Characterization

ABSTRACT

A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G. The clique-transversal number, denoted by $\tau_C(G)$, is the minimum cardinality of a clique-transversal set in G. In 2008, we showed that the clique-transversal number of every claw-free cubic graph is bounded above by half of its order. In this note we characterize claw-free cubic graphs which attain the upper bound.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

All graphs considered here are finite, simple and nonempty. For standard terminology not given here we refer the reader to [1].

Let G = (V, E) be a graph with vertex set V and edge set E. For a vertex $v \in V$, the open neighborhood N(v) of v is defined as the set of vertices adjacent to v, i.e., $N(v) = \{u \mid uv \in E\}$. The closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. For a subset $S \subseteq V$, the open neighborhood of S is $N[S] = \bigcup_{v \in S} N[v]$ and the closed neighborhood of S is $N[S] = \bigcup_{v \in S} N[v]$. The degree of v is equal to |N(v)|, denoted by $d_G(v)$ or simply d(v). If $d_G(v) = k$ for all $v \in V$, then we call G K-regular. In particular, a 3-regular graph is also called a cubic graph. For a subset $S \subseteq V$, the subgraph induced by S is denoted by S, and we let S0 denote the set of vertices in S1 that are adjacent to S1. As usual, S2, denotes the complete bipartite graph with classes of cardinality S2 and S3 is the complete graph on S4 is called a diamond. A graph S5 is add to be claw-free if it does not contain an induced subgraph that is isomorphic to a claw. A subset S3 of S4 is called an independent set of S6 if no two vertices of S5 are adjacent in S6.

The clique-transversal set in graphs can be regarded as a special case of the transversal set in hypergraph theory [2]. A clique C of a graph G is a complete subgraph maximal under inclusion and having at least two vertices. According to this definition, isolated vertices are not considered to be cliques here. A clique of order m of G is called an m-clique of G. A set $D \subseteq V$ is called a *clique-transversal set* of G if G meets all cliques of G, i.e., G for any clique G of G. The *clique-transversal number*, denoted by G is the minimum cardinality of a clique-transversal set of G.

Erdős et al. [3] have proved that the problem of finding a minimum clique-transversal set for a graph is NP-hard. It is therefore of interest to determine bounds on the clique-transversal number of a graph. In [3] the authors showed that every graph of order n has clique-transversal number at most $n - \sqrt{2n} + 3/2$ and they observed that τ_C can be very close to

[†] This research was partially supported by the National Natural Science Foundation of China (No. 60773078), PuJiang Project of Shanghai (No. 09P[1405000) and Shanghai Leading Academic Discipline Project (No. S30104).

^{*} Corresponding author. Tel.: +86 2166135652; fax: +86 2166133292. E-mail address: efshan@shu.edu.cn (E. Shan).

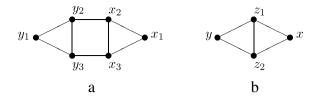


Fig. 1. (a) The double triangle F_1 ; (b) The diamond F_2 .

n=|V(G)|, namely $\tau_C=n-o(n)$ can hold. On the other hand, one also observes that τ_C can be very small (possibly $\tau_C=1$) for general graphs. On the basis of the fact above, it is reasonable to ask how drastically τ_C decreases or increases when some assumptions are imposed on the graph G. From this point of view, Tuza [4] and Andreae [5] established upper bounds on τ_C for chordal graphs. Andreae et al. [6] investigated classes of graphs of order G0 for which G1 for which G2 for connected G3 found the tight upper bound on G4 for cubic graphs. For other investigations on the clique-transversal sets in graphs, we refer the reader to [9–12].

In [7] we also showed that $3n/8 \le \tau_C(G) \le n/2$ for a cubic claw-free graph G of order n. This note gives a characterization of the extremal graphs attaining the upper bound.

2. The main results

Theorem 1 ([7]). For any claw-free cubic graph G of order n where $G \ncong K_4$, $\frac{3}{8}n \le \tau_C(G) \le \frac{n}{2}$.

Lemma 2. Let G be claw-free cubic graph of order n. If every triangle of G is contained in a diamond, then

$$\tau_{C}(G) = \begin{cases} \frac{3}{8}n & \text{if } n \equiv 0 \pmod{8}; \\ \frac{3n+4}{8} & \text{otherwise.} \end{cases}$$

Proof. Since *G* is claw-free, each vertex of *G* lies in a triangle. Furthermore, since every triangle of *G* is contained in a diamond, the graph *G* can be viewed as a "cycle" on "vertices" where each "vertex" is a copy of a diamond. That is, *G* is obtained from the disjoint union of $k \ge 2$ copies of a diamond by pairing arbitrarily all the vertices of degree 2 in distinct copies and joining all paired vertices of degree 2 so that each vertex of *G* has degree 3. By the parity of k, we have $n \equiv 0 \pmod{8}$ or $n \equiv 4 \pmod{8}$. By Theorem 1, we have

$$\tau_{C}(G) \geq \lceil 3n/8 \rceil = \begin{cases} \frac{3}{8}n & \text{if } n \equiv 0 \pmod{8}; \\ \frac{3n+4}{8} & \text{otherwise.} \end{cases}$$

Next we show that the converse inequality holds by induction on k. For k=2,3, it is easy to check that the assertion is true. Therefore we may assume that $k \ge 4$ for the induction step.

Let A and B be two consecutive diamonds of G. We delete the set $V(A) \cup V(B)$. This yields two vertices of degree 2, say u and v. Note that $uv \notin E(G)$. Add new edge uv and we denote by G' the resulting graph. By the induction hypothesis, the assertion holds for G'. So $\tau_C(G') \leq \lceil 3|V(G')|/8 \rceil = \lceil 3(n-8)/8 \rceil$. Let S' be a minimum clique-transversal set of G'. Obviously, $u \in S'$ or $v \in S'$. It is easy to see that we can choose three vertices x, y, z in $V(A) \cup V(B)$ such that $S' \cup \{x, y, z\}$ is a clique-transversal set of G. Hence $\tau_C(G) \leq |S'| + 3 \leq \lceil 3(n-8)/8 \rceil + 3 \leq \lceil 3n/8 \rceil$. \square

For a claw-free cubic graph G, let T be a triangle as an induced subgraph of G and $|N(V(T)) \cap (G - V(T))| = 3$. If $N(V(T)) \cap (G - V(T))$ is an independent set of vertices in G, we call T an isolated triangle of G. Otherwise, G must contain a double triangle (see Fig. 1(a)) as its induced subgraph.

Theorem 3. If G is a claw-free cubic graph of order n, then $\tau_C(G) = \frac{n}{2}$ if and only if G is diamond-free.

Proof. Suppose that G is diamond-free. Since G is cubic and claw-free, each vertex of G lies exactly in one 2-clique and one 3-clique in G. Hence G contains a precise total of n/2 2-cliques and any two 2-cliques in G are disjoint. This implies that $\tau_C(G) \ge n/2$. By Theorem 1, we have $\tau_C(G) = n/2$.

Conversely, suppose that G contains at least one diamond with $\tau_C(G) = n/2$. Choose such a graph G with as few vertices as possible. Then G is connected. If G contains neither isolated triangles nor double triangles, then every triangle of G must be contained in a diamond. By Lemma 2, we have $\tau_C(G) < n/2$, contradicting our assumption. Therefore, G contains isolated triangles or double triangles as its induced subgraphs.

Suppose that *G* contains double triangles as its induced subgraphs of *G*. We have the following claim.

Download English Version:

https://daneshyari.com/en/article/1709202

Download Persian Version:

https://daneshyari.com/article/1709202

<u>Daneshyari.com</u>