Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On Ricceri's conjecture for a class of nonlinear eigenvalue problems*

Xianling Fan*

Department of Mathematics, Lanzhou City University, Lanzhou, 730070, PR China Department of Mathematics, Lanzhou University, Lanzhou, 730000, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 29 September 2008 Received in revised form 19 March 2009 Accepted 30 March 2009

Keywords: Nonlinear eigenvalue problem Elliptic equation Dirichlet problem Lipschitz condition Ricceri conjecture

The aim of the present work is to give a negative answer to the conjecture proposed by Ricceri [1] for a class of nonlinear elliptic eigenvalue problems.

Ricceri [1] dealt with the following eigenvalue problem:

$$\begin{cases} -\Delta u = \lambda f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

$$(P_{\lambda f})$$

In this work we give a negative answer to a conjecture proposed by B. Ricceri in the

reference [B. Ricceri, A remark on a class of nonlinear eigenvalue problems, Nonlinear Anal.

69 (2008) 2964–2967] for a class of nonlinear elliptic eigenvalue problems.

where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain, $\lambda \in \mathbb{R}$, $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(0) = 0. Since f(0) = 0, 0 is a solution of $(P_{\lambda f})$ for each $\lambda \in \mathbb{R}$. Define

 $\Lambda_f = \{\lambda > 0 \mid (P_{\lambda f}) \text{ has at least one non-zero classical solution} \}.$

For fixed L > 0, define

$$\mathcal{B}_{L} = \{ f \mid f : \mathbb{R} \to \mathbb{R} \text{ is Lipschitzian with Lipschitz constant } L \text{ and } f(0) = 0 \},\$$
$$\mathcal{C}_{L} = \left\{ f \mid f \in \mathcal{B}_{L} \text{ and } \sup_{\xi \in \mathbb{R}} \int_{0}^{\xi} f(t) dt = 0 \right\}.$$

Let λ_1 be the first eigenvalue for the problem

 $-\Delta u = \lambda u \quad \text{in } \Omega,$ u = 0on $\partial \Omega$.

As usual, we adopt the convention $\inf \emptyset = +\infty$.

© 2009 Elsevier Ltd. All rights reserved.

(1)

 $^{^{}m st}$ The research was supported by the National Natural Science Foundation of China (10671084).

Corresponding address: Department of Mathematics, Lanzhou City University, Lanzhou, 730070, PR China. E-mail addresses: fanxl@lzu.edu.cn, fanxlmath@gmail.com.

^{0893-9659/\$ -} see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2009.03.012

Sato and Yanagida [2] proved the equality

$$\inf_{f\in\mathcal{B}_L}\inf\Lambda_f=\frac{\lambda_1}{L}.$$
(2)

Ricceri [1] proved the inequality

$$\inf_{f \in \mathcal{C}_L} \inf \Lambda_f \ge \frac{3\lambda_1}{L} \tag{3}$$

and proposed the following conjecture:

Conjecture ([1]). For every L > 0, one has

$$\inf_{f \in \mathcal{C}_L} \inf \Lambda_f = \frac{3\lambda_1}{L}.$$
(4)

In [3] the author has proved the following result.

Proposition 1 ([3], Theorem 3). For every L > 0, one has that $\frac{3\lambda_1}{L} \notin \Lambda_f$ for all $f \in C_L$.

As was mentioned in [3], after proving Proposition 1, Ricceri's conjecture is still open. It is proved in [3] that, if we use the Carathéodory function f(x, u) instead of f(u) in the problem $(P_{\lambda f})$, then the corresponding Ricceri-type conjecture is correct. The main result of the present work is the following theorem which gives a negative answer to Ricceri's conjecture.

Theorem 1. For every L > 0, one has

$$\inf_{f \in \mathcal{C}_L} \inf \Lambda_f > \frac{3\lambda_1}{L}.$$
(5)

The nonlinear eigenvalue problems of the form $(P_{\lambda f})$ have been studied extensively and many interesting results for various f have been obtained. The equality (2) established by Sato and Yanagida [2] for the class \mathcal{B}_L gives the precise value of $\inf_{f \in \mathcal{B}_L} \inf \Lambda_f$, which is a fine result. \mathcal{C}_L is a special subclass of \mathcal{B}_L . For example, the function $f(t) = -\sin t$ belongs to \mathcal{C}_1 . Studying the precise value of $\inf_{f \in \mathcal{C}_L} \inf \Lambda_f$ is interesting. Our Theorem 1 gives a negative answer to the Ricceri's conjecture but does not give the precise value of $\inf_{f \in \mathcal{C}_L} \inf \Lambda_f$. The inequality (5) is valid for any bounded smooth domain Ω ; however, perhaps the precise value of $\inf_{f \in \mathcal{C}_L} \inf \Lambda_f$ is dependent on Ω .

Note that, by the regularity results (see e.g. [4]), when $f \in \mathcal{B}_L$, every weak solution of $(P_{\lambda f})$ is a classical solution. Because $\frac{f}{I} \in \mathcal{C}_1$ for $f \in \mathcal{C}_L$, we only need to prove Theorem 1 in the case of L = 1.

The following result revealing the properties of the elements in C_1 is proved in [3].

Lemma 1 ([3], Lemma 3). For every $f \in C_1$, one has that $\frac{f(\xi)}{\xi} \leq \frac{1}{3}$ for all $\xi \in \mathbb{R} \setminus \{0\}$, and the equation $\frac{f(\xi)}{\xi} = \frac{1}{3}$ has at most one positive solution and one negative solution.

It follows from Lemma 1 that, for every $f \in \mathfrak{C}_1$ there holds

$$f(\xi)\xi \le \frac{1}{3}\xi^2, \quad \forall \xi \in \mathbb{R}.$$
(6)

Remark 1. We point out that inequality (3), proved by Ricceri [1], can be obtained from (6). Indeed, in order to prove (3) with L = 1 we can argue by contradiction. Assume that there exists $f \in C_1$ and $\lambda < 3\lambda_1$ such that $\lambda \in A_f$. Then $(P_{\lambda f})$ has a non-zero solution *u*. Thus, by (6) and $\lambda < 3\lambda_1$, we have that

$$\int_{\Omega} |\nabla u|^2 \, \mathrm{d}x = \lambda \int_{\Omega} f(u) u \, \mathrm{d}x \le \frac{\lambda}{3} \int_{\Omega} |u|^2 \, \mathrm{d}x < \lambda_1 \int_{\Omega} |u|^2 \, \mathrm{d}x$$

which contradicts the fact that λ_1 is the first eigenvalue of (1).

The following lemma can be proved immediately from the definition of C_1 and hence the proof is omitted here.

Lemma 2. Let $f \in \mathcal{C}_1$ and t > 0. Set $g(\xi) = \frac{f(t\xi)}{t}$ for $\xi \in \mathbb{R}$. Then $g \in \mathcal{C}_1$.

Proof of Theorem 1. We only prove Theorem 1 in the case of L = 1. Arguing by contradiction, assume that

$$\inf_{f \in \mathcal{O}_1} \inf \Lambda_f = 3\lambda_1.$$

Then there are $\{f_n\} \subset C_1, \{\mu_n\} \subset (0, +\infty)$ and $\{u_n\} \subset H_0^1(\Omega) \setminus \{0\}$ such that $\mu_n \to 3\lambda_1$ as $n \to \infty$ and $-\Delta u_n = \mu_n f_n(u_n)$ in Ω for n = 1, 2, ...

Download English Version:

https://daneshyari.com/en/article/1709256

Download Persian Version:

https://daneshyari.com/article/1709256

Daneshyari.com